A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems

被引:322
作者
Karakashian, OA [1 ]
Pascal, F
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Paris 11, Math Lab, F-91405 Orsay, France
[3] CNRS, F-91405 Orsay, France
关键词
discontinuous Galerkin methods; a posteriori estimates;
D O I
10.1137/S0036142902405217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several a posteriori error estimators are introduced and analyzed for a discontinuous Galerkin formulation of a model second-order elliptic problem. In addition to residual-type estimators, we introduce some estimators that are couched in the ideas and techniques of domain decomposition. Results of numerical experiments are presented.
引用
收藏
页码:2374 / 2399
页数:26
相关论文
共 20 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
[Anonymous], 1995, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques
[3]  
[Anonymous], 1976, LECT NOTES PHYS
[4]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]  
Arnold DN, 2000, LECT NOTES COMP SCI, V11, P89
[6]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[7]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[8]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[9]   PIECEWISE SOLENOIDAL VECTOR-FIELDS AND THE STOKES PROBLEM [J].
BAKER, GA ;
JUREIDINI, WN ;
KARAKASHIAN, OA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1466-1485
[10]  
BECKER R, IN PRESS COMPUT METH