On moduli spaces of Hitchin pairs

被引:13
作者
Biswas, Indranil [1 ]
Gothen, Peter B. [2 ]
Logares, Marina [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Univ Porto, Fac Ciencias, Dept Matemat Pura, P-4169007 Oporto, Portugal
[3] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
关键词
TORELLI THEOREM; VECTOR-BUNDLES; HIGGS BUNDLES; CURVE;
D O I
10.1017/S0305004111000405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact Riemann surface X of genus at-least two. Fix a holomorphic line bundle L over X. Let M be the moduli space of Hitchin pairs (E, phi is an element of H-0(End(0)(E) circle times L)) over X of rank r and fixed determinant of degree d. The following conditions are imposed: (i) deg(L) >= 2g - 2, r >= 2, and L-circle times r not equal K-X(circle times r) (ii) (r, d) = 1; and (iii) if g = 2 then r >= 6, and if g = 3 then r >= 4. We prove that that the isomorphism class of the variety M uniquely determines the isomorphism class of the Riemann surface X. Moreover, our analysis shows that M is irreducible (this result holds without the additional hypothesis on the rank for low genus).
引用
收藏
页码:441 / 457
页数:17
相关论文
共 28 条
  • [1] [Anonymous], PUBL MATH IHES
  • [2] THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES
    ATIYAH, MF
    BOTT, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505): : 523 - 615
  • [3] [Anonymous], PRINCIPLES ALGEBRAIC
  • [4] [Anonymous], 1980, JOURNEES GEOMETRIE A
  • [5] [Anonymous], 1974, I HAUTES ETUDES SCI
  • [6] [Anonymous], 1992, I HAUTES TUDES SCI P
  • [7] Intermediate Jacobians and Hodge structures of moduli spaces
    Arapura, D
    Sastry, P
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2000, 110 (01): : 1 - 26
  • [8] A Torelli theorem for the moduli space of Higgs bundles on a curve
    Biswas, I
    Gómez, TL
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 159 - 169
  • [9] AN INFINITESIMAL STUDY OF THE MODULI OF HITCHIN PAIRS
    BISWAS, I
    RAMANAN, S
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 219 - 231
  • [10] BOTTACIN F, 1995, ANN SCI ECOLE NORM S, V28, P391