Dynamical properties and simulation of a new Lorenz-like chaotic system

被引:63
作者
Li, Xianyi [1 ]
Ou, Qianjun [1 ]
机构
[1] Shenzhen Univ, Coll Math & Computat Sci, Shenzhen 518060, Guangdong, Peoples R China
关键词
Lorenz-type system; Center Manifold Theorem; Pitchfork bifurcation; Hopf bifurcation; Homoclinic and heteroclinic orbit; HOPF-BIFURCATION ANALYSIS; SYNCHRONIZATION; STABILITY;
D O I
10.1007/s11071-010-9887-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper formulates a new three-dimensional chaotic system that originates from the Lorenz system, which is different from the known Lorenz system, Rossler system, Chen system, and includes Lu systems as its special case. By using the center manifold theorem, the stability character of its non-hyperbolic equilibria is obtained. The Hopf bifurcation and the degenerate pitchfork bifurcation, the local character of stable manifold and unstable manifold, are also in detail shown when the parameters of this system vary in the space of parameters. Corresponding bifurcation cases are illustrated by numerical simulations, too. The existence or non-existence of homoclinic and heteroclinic orbits of this system is also studied by both rigorous theoretical analysis and numerical simulation.
引用
收藏
页码:255 / 270
页数:16
相关论文
共 32 条
[1]   Breaking projective chaos synchronization secure communication using filtering and generalized synchronization [J].
Alvarez, G ;
Li, SJ ;
Montoya, F ;
Pastor, G ;
Romera, M .
CHAOS SOLITONS & FRACTALS, 2005, 24 (03) :775-783
[2]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[3]   On the generalized Lorenz canonical form [J].
Celikovsky, S ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1271-1276
[4]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[5]  
CELIKOVSKY S, 1994, KYBERNETIKA, V30, P403
[6]  
CELIKOVSKY S, 2002, P 15 TRIENN WORLD CO
[7]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
[8]  
EBERHART RC, 2002, IEEE ENG MED BIOL, V3, P41
[9]   Stability and Hopf bifurcation analysis of a new system [J].
Huang, Kuifei ;
Yang, Qigui .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :567-578
[10]   A note on Hopf bifurcation in Chen's system [J].
Li, CP ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (06) :1609-1615