Control-enabled Observability and Sensitivity Functions in Visual-Inertial Odometry

被引:0
|
作者
Bai, He [1 ]
Taylor, Clark N. [2 ]
机构
[1] Oklahoma State Univ, Mech & Aerosp Engn, Stillwater, OK 74078 USA
[2] US Air Force, Res Lab, Wright Patterson AFB, OH USA
关键词
Visual-inertial odometry; Unmanned aircraft systems; Observability; Sensitivity;
D O I
10.1007/s10846-018-0808-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual-inertial odometry (VIO) is an important component in autonomous navigation of Unmanned Aerial Vehicles (UAVs) in GPS-denied or degraded environments. VIO is a nonlinear estimation problem where control inputs, such as acceleration and angular velocity, have significant impact on the estimation performance. In this paper, we examine the effects of controls on the VIO problem. We first propose a sensitivity function that characterizes the relationship between the errors in the control inputs and the state estimation performance. This function depends on the control inputs, which is unique for nonlinear systems since for linear systems, state observability properties are independent of control inputs. We next derive analytical expressions of the sensitivity functions for various VIO scenarios relevant to UAV motions. Using Monte-Carlo simulations, we validate the derived sensitivity functions. We also show an interesting fact that deceleration along the velocity direction yields better estimation performance than acceleration with the same magnitude.
引用
收藏
页码:289 / 301
页数:13
相关论文
共 50 条
  • [31] Visual-Inertial Odometry of Smartphone under Manhattan World
    Wang, YuAn
    Chen, Liang
    Wei, Peng
    Lu, XiangChen
    REMOTE SENSING, 2020, 12 (22) : 1 - 27
  • [32] Active Heading Planning for Improving Visual-Inertial Odometry
    Lee, Joohyuk
    Lee, Kyuman
    2024 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS, ICUAS, 2024, : 1085 - 1092
  • [33] Dense Visual-Inertial Odometry for Tracking of Aggressive Motions
    Ling, Yonggen
    Shen, Shaojie
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 576 - 583
  • [34] A Stereo-Based Visual-Inertial Odometry for SLAM
    Li, Yong
    Lang, ShiBing
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 594 - 598
  • [35] A Monocular Visual-Inertial Odometry Based on Hybrid Residuals
    Lai, Zhenghong
    Gui, Jianjun
    Xu, Dengke
    Dong, Hongbin
    Deng, Baosong
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3304 - 3311
  • [36] Renormalization for Initialization of Rolling Shutter Visual-Inertial Odometry
    Branislav Micusik
    Georgios Evangelidis
    International Journal of Computer Vision, 2021, 129 : 2011 - 2027
  • [37] Continuous-Time Spline Visual-Inertial Odometry
    Mo, Jiawei
    Sattar, Junaed
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 9492 - 9498
  • [38] IMU Preintegration for Visual-Inertial Odometry Pose Estimation
    Liu, Fuchun
    Su, Xuan
    He, Yun
    Luo, Fei
    Gao, Huanli
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 5305 - 5310
  • [39] The TUM VI Benchmark for Evaluating Visual-Inertial Odometry
    Schubert, David
    Goll, Thore
    Demmel, Nikolaus
    Usenko, Vladyslav
    Stueckler, Joerg
    Cremers, Daniel
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1680 - 1687
  • [40] Visual-Inertial Combined Odometry System for Aerial Vehicles
    Zhang, Ji
    Singh, Sanjiv
    JOURNAL OF FIELD ROBOTICS, 2015, 32 (08) : 1043 - 1055