Control-enabled Observability and Sensitivity Functions in Visual-Inertial Odometry

被引:0
|
作者
Bai, He [1 ]
Taylor, Clark N. [2 ]
机构
[1] Oklahoma State Univ, Mech & Aerosp Engn, Stillwater, OK 74078 USA
[2] US Air Force, Res Lab, Wright Patterson AFB, OH USA
关键词
Visual-inertial odometry; Unmanned aircraft systems; Observability; Sensitivity;
D O I
10.1007/s10846-018-0808-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual-inertial odometry (VIO) is an important component in autonomous navigation of Unmanned Aerial Vehicles (UAVs) in GPS-denied or degraded environments. VIO is a nonlinear estimation problem where control inputs, such as acceleration and angular velocity, have significant impact on the estimation performance. In this paper, we examine the effects of controls on the VIO problem. We first propose a sensitivity function that characterizes the relationship between the errors in the control inputs and the state estimation performance. This function depends on the control inputs, which is unique for nonlinear systems since for linear systems, state observability properties are independent of control inputs. We next derive analytical expressions of the sensitivity functions for various VIO scenarios relevant to UAV motions. Using Monte-Carlo simulations, we validate the derived sensitivity functions. We also show an interesting fact that deceleration along the velocity direction yields better estimation performance than acceleration with the same magnitude.
引用
收藏
页码:289 / 301
页数:13
相关论文
共 50 条
  • [1] Control-enabled Observability and Sensitivity Functions in Visual-Inertial Odometry
    He Bai
    Clark N. Taylor
    Journal of Intelligent & Robotic Systems, 2019, 93 : 289 - 301
  • [2] Control-enabled Observability in Visual-Inertial Odometry
    Bai, He
    Taylor, Clark N.
    2017 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'17), 2017, : 822 - 829
  • [3] Observability Analysis of IMU Intrinsic Parameters in Stereo Visual-Inertial Odometry
    Jung, Jae Hyung
    Heo, Sejong
    Park, Chan Gook
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (10) : 7530 - 7541
  • [4] Robocentric Visual-Inertial Odometry
    Huai, Zheng
    Huang, Guoquan
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 6319 - 6326
  • [5] Robocentric visual-inertial odometry
    Huai, Zheng
    Huang, Guoquan
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2022, 41 (07): : 667 - 689
  • [6] Cooperative Visual-Inertial Odometry
    Zhu, Pengxiang
    Yang, Yulin
    Ren, Wei
    Huang, Guoquan
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13135 - 13141
  • [7] Compass aided visual-inertial odometry
    Wang, Yandong
    Zhang, Tao
    Wang, Yuanchao
    Ma, Jingwei
    Li, Yanhui
    Han, Jingzhuang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 : 101 - 115
  • [8] Information Sparsification in Visual-Inertial Odometry
    Hsiung, Jerry
    Hsiao, Ming
    Westman, Eric
    Valencia, Rafael
    Kaess, Michael
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1146 - 1153
  • [9] Monocular Visual-Inertial Odometry for Agricultural Environments
    Song, Kaiyu
    Li, Jingtao
    Qiu, Run
    Yang, Gaidi
    IEEE Access, 2022, 10 : 103975 - 103986
  • [10] A Partial Sparsification Scheme for Visual-Inertial Odometry
    Zhu, Zhikai
    Wang, Wei
    2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 1983 - 1989