Optimal lower bound estimates for the blow-up rate for the Zakharov system in a nonhomogeneous medium

被引:1
作者
Gan, Zaihui [1 ,2 ]
Guo, Boling [2 ]
Han, Lijia [2 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Zakharov system; Nonhomogeneous medium; Blow-up rate; Optimal lower bound estimate; NONLINEAR SCHRODINGER-EQUATION; LANGMUIR TURBULENCE; DIMENSION-2; EXISTENCE; CAUCHY;
D O I
10.1016/j.jmaa.2011.02.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain lower bound estimates for the blow-up rate of finite time blow-up solutions to the Cauchy problem for the Zakharov system in a nonhomogeneous medium in two space dimensions. By introducing suitable scale transformations of space and time, and the use of compactness arguments, we derive an optimal lower bound estimate in the energy space H-2(R-2) x L-2(R-2) x H-1 (R-2) for the blow-up rate for t near the finite blow-up time T. Also we give an application to the virial identity for the Zakharov system under study. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 223
页数:20
相关论文
共 23 条