Entanglement entropy and quantum phase transitions in quantum dots coupled to Luttinger liquid wires

被引:11
|
作者
Goldstein, Moshe [1 ,2 ]
Gefen, Yuval [3 ]
Berkovits, Richard [1 ]
机构
[1] Bar Ilan Univ, Minerva Ctr, Dept Phys, IL-52900 Ramat Gan, Israel
[2] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[3] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
基金
以色列科学基金会;
关键词
DEGENERATE ELECTRON-GAS; ONE-BODY THEORY; KONDO PROBLEM; COULOMB-BLOCKADE; SCALING THEORY; TRANSMISSION; INTERFERENCE; CONDUCTANCE; METALS; CHAINS;
D O I
10.1103/PhysRevB.83.245112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a quantum phase transition that occurs in a system composed of two impurities (or quantum dots), each coupled to a different interacting (Luttinger liquid) lead. While the impurities are coupled electrostatically, there is no tunneling between them. Using a mapping of this system onto a Kondo model, we show analytically that the system undergoes a Berezinskii-Kosterlitz-Thouless quantum phase transition as a function of the Luttinger liquid parameter in the leads and the dot-lead interaction. The phase with low values of the Luttinger liquid parameter is characterized by an abrupt switch of the population between the impurities as a function of a common applied gate voltage. However, this behavior is hard to verify numerically since one would have to study extremely long systems. Interestingly, though, at the transition the entanglement entropy drops from a finite value of ln(2) to zero. The drop becomes sharp for infinite systems. One can employ finite-size scaling to extrapolate the transition point and the behavior in its vicinity from the behavior of the entanglement entropy in moderate size samples. We employ the density matrix renormalization-group numerical procedure to calculate the entanglement entropy of systems with lead lengths of up to 480 sites. Using finite-size scaling, we extract the transition value and show it to be in good agreement with the analytical prediction.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Charge transport through single molecules, quantum dots and quantum wires
    Andergassen, S.
    Meden, V.
    Splettstoesser, J.
    Schoeller, H.
    Wegewijs, M. R.
    NANOTECHNOLOGY, 2010, 21 (27)
  • [12] Junctions of multiple quantum wires with different Luttinger parameters
    Hou, Chang-Yu
    Rahmani, Armin
    Feiguin, Adrian E.
    Chamon, Claudio
    PHYSICAL REVIEW B, 2012, 86 (07)
  • [13] Quantum dot at a Luttinger liquid edge
    Rylands, Colin
    Andrei, Natan
    PHYSICAL REVIEW B, 2017, 96 (11)
  • [14] Quantum wires coupled by tunneling
    Schlottmann, P.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (03) : 495 - 499
  • [15] Quantum phase transition in an array of coupled superconducting quantum dots with charge frustration
    Sarkar, Sujit
    PHYSICAL REVIEW B, 2010, 81 (21):
  • [16] Entanglement entropy of quantum wire junctions
    Calabrese, Pasquale
    Mintchev, Mihail
    Vicari, Ettore
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (10)
  • [17] Electrical and optical control of entanglement entropy in a coupled triple quantum dot system
    Mehmannavaz, Mohammad Reza
    JOURNAL OF MODERN OPTICS, 2015, 62 (17) : 1391 - 1399
  • [18] Strong electron-electron interactions of a Tomonaga-Luttinger liquid observed in InAs quantum wires
    Sato, Yosuke
    Matsuo, Sadashige
    Hsu, Chen-Hsuan
    Stano, Peter
    Ueda, Kento
    Takeshige, Yuusuke
    Kamata, Hiroshi
    Lee, Joon Sue
    Shojaei, Borzoyeh
    Wickramasinghe, Kaushini
    Shabani, Javad
    Palmstrom, Chris
    Tokura, Yasuhiro
    Loss, Daniel
    Tarucha, Seigo
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [19] ELECTRON TRANSPORT THROUGH A QUANTUM INTERFEROMETER WITH SIDE-COUPLED QUANTUM DOTS: A THEORETICAL STUDY
    Maiti, Santanu K.
    NANO, 2010, 5 (04) : 237 - 244
  • [20] Thermoelectrics with Coulomb-coupled quantum dots
    Thierschmann, Holger
    Sanchez, Rafael
    Sothmann, Bjoern
    Buhmann, Hartmut
    Molenkamp, Laurens W.
    COMPTES RENDUS PHYSIQUE, 2016, 17 (10) : 1109 - 1122