Nitrogen-doped graphene nanosheets as reactive water purification membranes

被引:75
作者
Liu, Yanbiao [1 ]
Yu, Ling [1 ]
Ong, Choon Nam [1 ]
Xie, Jianping [2 ]
机构
[1] Natl Univ Singapore, NUS Environm Res Inst, Singapore 117411, Singapore
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117585, Singapore
关键词
persulfate activation; nitrogen-doped graphene; phenol oxidation; convective flow; batch system; OXYGEN REDUCTION REACTION; MILL WASTE-WATER; PHENOLIC-COMPOUNDS; CATALYTIC-OXIDATION; HIGHLY EFFICIENT; OXIDE MEMBRANES; ACTIVE-SITES; REMOVAL; PERSULFATE; DEGRADATION;
D O I
10.1007/s12274-016-1089-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxidation of organic pollutants by sulfate radicals produced via activation of persulfate has emerged as a promising advanced oxidation technology to address various challenging environmental issues. The development of an effective, environmentally-friendly, metal-free catalyst is the key to this technology. Additionally, a supported catalyst design is more advantageous than conventional suspended powder catalysts from the point of view of mass transfer and practical engineering applications (e.g. post-use separation). In this study, a metal-free N-doped reduced graphene oxide (N-rGO) catalyst was prepared via a facile hydrothermal method. N-rGO filters were then synthesized by facile vacuum filtration, such that water can flow through nanochannels within the filters. Various advanced characterization techniques were employed to obtain structural and compositional information of the as-synthesized N-rGO filters. An optimized phenol oxidative flux of 0.036 +/- 0.002 mmol.h(-1) was obtained by metal-free catalytic activation of persulfate at an influent persulfate concentration of 1.0 mmol.L-1 and filter weight of 15 mg, while a N-free rGO filter demonstrated negligible phenol oxidation capability under similar conditions. Compared to a conventional batch system, the flow-through design demonstrates obviously enhanced oxidation kinetics (0.036 vs. 0.010 mmol.h(-1)), mainly due to the liquid flow through the filter leading to convection-enhanced transfer of the target molecule to the filter active sites. Overall, the results exemplified the advantages of organic compound removal by catalytic activation of persulfate using a metal-free catalyst in flow-through mode, and demonstrated the potential of N-rGO filters for practical environmental applications.
引用
收藏
页码:1983 / 1993
页数:11
相关论文
共 58 条
[1]   Low cost biosorbent "banana peel" for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies [J].
Achak, M. ;
Hafidi, A. ;
Ouazzani, N. ;
Sayadi, S. ;
Mandi, L. .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (01) :117-125
[2]   Decolourization and removal of phenolic compounds from olive mill wastewater by electrocoagulation [J].
Adhoum, N ;
Monser, L .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2004, 43 (10) :1281-1287
[3]   Characterization and removal of phenolic compounds from condensate-oil refinery wastewater [J].
Al Hashemi, W. ;
Maraqa, M. A. ;
Rao, M. V. ;
Hossain, Md M. .
DESALINATION AND WATER TREATMENT, 2015, 54 (03) :660-671
[4]   Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents [J].
Bi, Hengchang ;
Xie, Xiao ;
Yin, Kuibo ;
Zhou, Yilong ;
Wan, Shu ;
He, Longbing ;
Xu, Feng ;
Banhart, Florian ;
Sun, Litao ;
Ruoff, Rodney S. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) :4421-4425
[5]   Low Temperature Casting of Graphene with High Compressive Strength [J].
Bi, Hengchang ;
Yin, Kuibo ;
Xie, Xiao ;
Zhou, Yilong ;
Wan, Neng ;
Xu, Feng ;
Banhart, Florian ;
Sun, Litao ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2012, 24 (37) :5124-5129
[6]   Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry [J].
Brillas, Enric ;
Sires, Ignasi ;
Oturan, Mehmet A. .
CHEMICAL REVIEWS, 2009, 109 (12) :6570-6631
[7]   Removal of phenolic compounds from synthetic wastewater using soybean peroxidase [J].
Caza, N ;
Bewtra, JK ;
Biswas, N ;
Taylor, KE .
WATER RESEARCH, 1999, 33 (13) :3012-3018
[8]   Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction [J].
Chen, Chao ;
Cai, Weimin ;
Long, Mingce ;
Zhou, Baoxue ;
Wu, Yahui ;
Wu, Deyong ;
Feng, Yujie .
ACS NANO, 2010, 4 (11) :6425-6432
[9]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[10]   Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst [J].
Chen, Sheng ;
Duan, Jingjing ;
Tang, Youhong ;
Jin, Bo ;
Qiao, Shi Zhang .
NANO ENERGY, 2015, 11 :11-18