Proteomics of extracellular vesicles: Exosomes and ectosomes

被引:323
作者
Choi, Dong-Sic [1 ]
Kim, Dae-Kyum [1 ]
Kim, Yoon-Keun [1 ]
Gho, Yong Song [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Life Sci, Pohang 790784, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
intercellular communicasomes; nanocosmos; intravesicular protein-protein interaction networks; proteomics; systems biology; CELL-DERIVED EXOSOMES; MEMBRANE-VESICLES; QUANTITATIVE PROTEOMICS; CANCER-DIAGNOSIS; MESSENGER-RNAS; MICROVESICLES; RELEASE; DISTINCT; IDENTIFICATION; PROLIFERATION;
D O I
10.1002/mas.21420
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Almost all bacteria, archaea, and eukaryotic cells shed extracellular vesicles either constitutively or in a regulated manner. These nanosized membrane vesicles are spherical, bilayered proteolipids that harbor specific subsets of proteins, DNAs, RNAs, and lipids. Recent research has facilitated conceptual advancements in this emerging field that indicate that extracellular vesicles act as intercellular communicasomes by transferring signals to their target cell via surface ligands and delivering receptors and functional molecules. Recent progress in mass spectrometry-based proteomic analyses of mammalian extracellular vesicles derived from diverse cell types and body fluids has resulted in the identification of several thousand vesicular proteins that provide us with essential clues to the molecular mechanisms involved in vesicle cargo sorting and biogenesis. Furthermore, cell-type- or disease-specific vesicular proteins help us to understand the pathophysiological functions of extracellular vesicles and contribute to the discovery of diagnostic and therapeutic target proteins. This review focuses on the high-throughput mass spectrometry-based proteomic analyses of mammalian extracellular vesicles (i.e., exosomes and ectosomes), EVpedia (a free web-based integrated database of high-throughput data for systematic analyses of extracellular vesicles; ), and the intravesicular protein-protein interaction network analyses of mammalian extracellular vesicles. The goal of this article is to encourage further studies to construct a comprehensive proteome database for extracellular vesicles that will help us to not only decode the biogenesis and cargo-sorting mechanisms during vesicle formation but also elucidate the pathophysiological roles of these complex extracellular organelles. (c) 2014 Wiley Periodicals, Inc. Mass Spec Rev 34: 474-490, 2015.
引用
收藏
页码:474 / 490
页数:17
相关论文
共 82 条
[1]   Exosomes with immune modulatory features are present in human breast milk [J].
Admyre, Charlotte ;
Johansson, Sara M. ;
Qazi, Khaleda Rahman ;
Filen, Jan-Jonas ;
Lahesmaa, Riitta ;
Norman, Mikael ;
Neve, Etienne P. A. ;
Scheynius, Annika ;
Gabrielsson, Susanne .
JOURNAL OF IMMUNOLOGY, 2007, 179 (03) :1969-1978
[2]   Intercellular transfer of the oncogenic receptor EGFrvIII by microvesicles derived from tumour cells [J].
Al-Nedawi, Khalid ;
Meehan, Brian ;
Micallef, Johann ;
Lhotak, Vladimir ;
May, Linda ;
Guha, Abhijit ;
Rak, Janusz .
NATURE CELL BIOLOGY, 2008, 10 (05) :619-U24
[3]   Quantitative proteomics as a new piece of the systems biology puzzle [J].
Bachi, Angela ;
Bonaldi, Tiziana .
JOURNAL OF PROTEOMICS, 2008, 71 (03) :357-367
[4]   Syndecan-syntenin-ALIX regulates the biogenesis of exosomes [J].
Baietti, Maria Francesca ;
Zhang, Zhe ;
Mortier, Eva ;
Melchior, Aurelie ;
Degeest, Gisele ;
Geeraerts, Annelies ;
Ivarsson, Ylva ;
Depoortere, Fabienne ;
Coomans, Christien ;
Vermeiren, Elke ;
Zimmermann, Pascale ;
David, Guido .
NATURE CELL BIOLOGY, 2012, 14 (07) :677-685
[5]   Proteomic Analysis of Exosomes from Mutant KRAS Colon Cancer Cells Identifies Intercellular Transfer of Mutant KRAS [J].
Beckler, Michelle Demory ;
Higginbotham, James N. ;
Franklin, Jeffrey L. ;
Ham, Amy-Joan ;
Halvey, Patrick J. ;
Imasuen, Imade E. ;
Whitwell, Corbin ;
Li, Ming ;
Liebler, Daniel C. ;
Coffey, Robert J. .
MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (02) :343-355
[6]   The proteome of red cell membranes and vesicles during storage in blood bank conditions [J].
Bosman, Giel J. C. G. M. ;
Lasonder, Edwin ;
Luten, Marleen ;
Roerdinkholder-Stoelwinder, Bregt ;
Novotny, Vera M. J. ;
Bos, Harry ;
De Grip, Willem J. .
TRANSFUSION, 2008, 48 (05) :827-835
[7]   MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis [J].
Buschow, Sonja I. ;
van Balkom, Bas W. M. ;
Aalberts, Marian ;
Heck, Albert J. R. ;
Wauben, Marca ;
Stoorvogel, Willem .
IMMUNOLOGY AND CELL BIOLOGY, 2010, 88 (08) :851-856
[8]   Proteolipidic Composition of Exosomes Changes during Reticulocyte Maturation [J].
Carayon, Kevin ;
Chaoui, Karima ;
Ronzier, Elsa ;
Lazar, Ikrame ;
Bertrand-Michel, Justine ;
Roques, Veronique ;
Balor, Stephanie ;
Terce, Francois ;
Lopez, Andre ;
Salome, Laurence ;
Joly, Etienne .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (39) :34426-34439
[9]   Comparative and Targeted Proteomic Analyses of Urinary Microparticles from Bladder Cancer and Hernia Patients [J].
Chen, Chien-Lun ;
Lai, Yue-Fan ;
Tang, Petrus ;
Chien, Kun-Yi ;
Yu, Jau-Song ;
Tsai, Cheng-Han ;
Chen, Hsiao-Wei ;
Wu, Chih-Ching ;
Chung, Ting ;
Hsu, Chia-Wei ;
Chen, Chi-De ;
Chang, Yu-Sun ;
Chang, Phei-Lang ;
Chen, Yi-Ting .
JOURNAL OF PROTEOME RESEARCH, 2012, 11 (12) :5611-5629
[10]   Proteomic analysis of microvesicles derived from human colorectal cancer cells [J].
Choi, Dong-Sic ;
Lee, Jae-Min ;
Park, Gun Wook ;
Lim, Hyeon-Woo ;
Bang, Joo Young ;
Kim, Yoon-Keun ;
Kwon, Kyung-Hoon ;
Kwon, Ho Jeong ;
Kim, Kwang Pyo ;
Gho, Yong Song .
JOURNAL OF PROTEOME RESEARCH, 2007, 6 (12) :4646-4655