Characterization of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection Clusters Based on Integrated Genomic Surveillance, Outbreak Analysis and Contact Tracing in an Urban Setting

被引:21
作者
Walker, Andreas [1 ]
Houwaart, Torsten [2 ]
Finzer, Patrick [2 ,3 ]
Ehlkes, Lutz [4 ]
Tyshaieva, Alona [2 ]
Damagnez, Maximilian [1 ]
Strelow, Daniel [2 ]
Duplessis, Ashley [1 ]
Nicolai, Jessica [2 ]
Wienemann, Tobias [2 ]
Tamayo, Teresa [2 ]
Vasconcelos, Malte Kohns [2 ]
Huelse, Lisanna [2 ]
Hoffmann, Katrin [3 ]
Luebke, Nadine [1 ]
Hauka, Sandra [1 ]
Andree, Marcel [1 ]
Daeumer, Martin P. [5 ]
Thielen, Alexander [5 ]
Kolbe-Busch, Susanne [2 ]
Goebels, Klaus [4 ]
Zotz, Rainer [3 ]
Pfeffer, Klaus [2 ]
Timm, Joerg [1 ]
Dilthey, Alexander T. [2 ,6 ,7 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Univ Hosp Dusseldorf, Inst Virol, Dusseldorf, Germany
[2] Heinrich Heine Univ Dusseldorf, Inst Med Microbiol & Hosp Hyg, Univ Str 2, D-40225 Dusseldorf, Germany
[3] Zotz Klimas, Dusseldorf, Germany
[4] Dusseldorf Hlth Dept Gesundheitsamt Dusseldorf, Dusseldorf, Germany
[5] SeqIT GmbH, Pfaffpl 10, D-67655 Kaiserslautern, Germany
[6] Univ Cologne, Inst Med Stat & Computat Biol, Cologne, Germany
[7] Univ Cologne, Cologne Excellence Cluster Cellular Stress Respon, Cologne, Germany
关键词
genomic epidemiology; infection chain; community transmission; rapid sequencing; Nanopore sequencing; REAL-TIME; VIRUS; ZIKA;
D O I
10.1093/cid/ciab588
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background Tracing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission chains is still a major challenge for public health authorities, when incidental contacts are not recalled or are not perceived as potential risk contacts. Viral sequencing can address key questions about SARS-CoV-2 evolution and may support reconstruction of viral transmission networks by integration of molecular epidemiology into classical contact tracing. Methods In collaboration with local public health authorities, we set up an integrated system of genomic surveillance in an urban setting, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) integration of public health authority contact tracing data, and d) a user-friendly dashboard application as a central data analysis platform. Results Application of the integrated system from August to December 2020 enabled a characterization of viral population structure, analysis of 4 outbreaks at a maximum care hospital, and genetically based identification of 5 putative population infection clusters, all of which were confirmed by contact tracing. The system contributed to the development of improved hospital infection control and prevention measures and enabled the identification of previously unrecognized transmission chains, involving a martial arts gym and establishing a link between the hospital to the local population. Conclusions Integrated systems of genomic surveillance could contribute to the monitoring and, potentially, improved management of SARS-CoV-2 transmission in the population. Tracing of SARS-CoV-2 population transmission chains is still a major challenge. We present an integrated system of genomic surveillance and show it to be capable of detecting infection chains in a large city during ongoing community transmission.
引用
收藏
页码:1039 / 1046
页数:8
相关论文
共 31 条
  • [1] BEAST 2: A Software Platform for Bayesian Evolutionary Analysis
    Bouckaert, Remco
    Heled, Joseph
    Kuehnert, Denise
    Vaughan, Tim
    Wu, Chieh-Hsi
    Xie, Dong
    Suchard, Marc A.
    Rambaut, Andrew
    Drummond, Alexei J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (04)
  • [2] Drummond AJ, 2005, MOL BIOL EVOL, V22, P1185, DOI [10.1093/molbev/msi103, 10.1093/molbev/mss075]
  • [3] Florian D., 2020, IFO SCHNELLDIENST, V73, P29
  • [4] APPLICATIONS OF NEXT-GENERATION SEQUENCING Towards a genomics-informed, real-time, global pathogen surveillance system
    Gardy, Jennifer L.
    Loman, Nicholas J.
    [J]. NATURE REVIEWS GENETICS, 2018, 19 (01) : 9 - 20
  • [5] Genomic epidemiology reveals transmission patterns and dynamics of SARS-CoV-2 in Aotearoa New Zealand
    Geoghegan, Jemma L.
    Ren, Xiaoyun
    Storey, Matthew
    Hadfield, James
    Jelley, Lauren
    Jefferies, Sarah
    Sherwood, Jill
    Paine, Shevaun
    Huang, Sue
    Douglas, Jordan
    Mendes, Fabio K.
    Sporle, Andrew
    Baker, Michael G.
    Murdoch, David R.
    French, Nigel
    Simpson, Colin R.
    Welch, David
    Drummond, Alexei J.
    Holmes, Edward C.
    Duchene, Sebastian
    de Ligt, Joep
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis
    Greninger, Alexander L.
    Naccache, Samia N.
    Federman, Scot
    Yu, Guixia
    Mbala, Placide
    Bres, Vanessa
    Stryke, Doug
    Bouquet, Jerome
    Somasekar, Sneha
    Linnen, Jeffrey M.
    Dodd, Roger
    Mulembakani, Prime
    Schneider, Bradley S.
    Muyembe-Tamfum, Jean-Jacques
    Stramer, Susan L.
    Chiu, Charles Y.
    [J]. GENOME MEDICINE, 2015, 7
  • [7] Tracking virus outbreaks in the twenty-first century
    Grubaugh, Nathan D.
    Ladner, Jason T.
    Lemey, Philippe
    Pybus, Oliver G.
    Rambaut, Andrew
    Holmes, Edward C.
    Andersen, Kristian G.
    [J]. NATURE MICROBIOLOGY, 2019, 4 (01) : 10 - 19
  • [8] Genomic epidemiology reveals multiple introductions of Zika virus into the United States
    Grubaugh, Nathan D.
    Ladner, Jason T.
    Kraemer, Moritz U. G.
    Dudas, Gytis
    Tan, Amanda L.
    Gangavarapu, Karthik
    Wiley, Michael R.
    White, Stephen
    Theze, Julien
    Magnani, Diogo M.
    Prieto, Karla
    Reyes, Daniel
    Bingham, Andrea M.
    Paul, Lauren M.
    Robles-Sikisaka, Refugio
    Oliveira, Glenn
    Pronty, Darryl
    Barcellona, Carolyn M.
    Metsky, Hayden C.
    Baniecki, Mary Lynn
    Barnes, Kayla G.
    Chak, Bridget
    Freije, Catherine A.
    Gladden-Young, Adrianne
    Gnirke, Andreas
    Luo, Cynthia
    MacInnis, Bronwyn
    Matranga, Christian B.
    Park, Daniel J.
    Qu, James
    Schaffner, Stephen F.
    Tomkins-Tinch, Christopher
    West, Kendra L.
    Winnicki, Sarah M.
    Wohl, Shirlee
    Yozwiak, Nathan L.
    Quick, Joshua
    Fauver, Joseph R.
    Khan, Kamran
    Brent, Shannon E.
    Reiner, Robert C., Jr.
    Lichtenberger, Paola N.
    Ricciardi, Michael J.
    Bailey, Varian K.
    Watkins, David I.
    Cone, Marshall R.
    Kopp, Edgar W.
    Hogan, Kelly N.
    Cannons, Andrew C.
    Jean, Reynald
    [J]. NATURE, 2017, 546 (7658) : 401 - +
  • [9] Spread of SARS-CoV-2 in the Icelandic Population
    Gudbjartsson, Daniel F.
    Helgason, Agnar
    Jonsson, Hakon
    Magnusson, Olafur T.
    Melsted, Pall
    Norddahl, Gudmundur L.
    Saemundsdottir, Jona
    Sigurdsson, Asgeir
    Sulem, Patrick
    Agustsdottir, Arna B.
    Eiriksdottir, Berglind
    Fridriksdottir, Run
    Gardarsdottir, Elisabet E.
    Georgsson, Gudmundur
    Gretarsdottir, Olafia S.
    Gudmundsson, Kjartan R.
    Gunnarsdottir, Thora R.
    Gylfason, Arnaldur
    Holm, Hilma
    Jensson, Brynjar O.
    Jonasdottir, Aslaug
    Jonsson, Frosti
    Josefsdottir, Kamilla S.
    Kristjansson, Thordur
    Magnusdottir, Droplaug N.
    le Roux, Louise
    Sigmundsdottir, Gudrun
    Sveinbjornsson, Gardar
    Sveinsdottir, Kristin E.
    Sveinsdottir, Maney
    Thorarensen, Emil A.
    Thorbjornsson, Bjarni
    Loeve, Arthur
    Masson, Gisli
    Jonsdottir, Ingileif
    Moeller, Alma D.
    Gudnason, Thorolfur
    Kristinsson, Karl G.
    Thorsteinsdottir, Unnur
    Stefansson, Kari
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (24) : 2302 - 2315
  • [10] Nextstrain: real-time tracking of pathogen evolution
    Hadfield, James
    Megill, Colin
    Bell, Sidney M.
    Huddleston, John
    Potter, Barney
    Callender, Charlton
    Sagulenko, Pavel
    Bedford, Trevor
    Neher, Richard A.
    [J]. BIOINFORMATICS, 2018, 34 (23) : 4121 - 4123