Computation of topological degree in ordered Banach spaces with lattice structure and its application to superlinear differential equations

被引:25
作者
Sun, Jingxian [1 ]
Liu, Xiaoying [1 ]
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 22116, Jiangsu, Peoples R China
关键词
cone; lattice; topological degree; superlinear Sturm-Liouville problems;
D O I
10.1016/j.jmaa.2008.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the cone theory and the lattice structure, we establish some methods of computation of the topological degree for the nonlinear operators which are not assumed to be cone mappings. As applications, the existence results of nontrivial solutions for superlinear Sturm-Liouville problems are given. We also investigate the singular superlinear Sturm-Liouville problems. (C) 2008 Published by Elsevier Inc.
引用
收藏
页码:927 / 937
页数:11
相关论文
共 11 条
  • [1] Amann H., 1972, J FUNCT ANAL, V11, P346, DOI DOI 10.1016/0022-1236(72)90074-2
  • [2] [Anonymous], 1987, Nonlinear Integral Equations
  • [3] Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
  • [4] Guo D., 1988, NONLINEAR PROBLEMS A
  • [5] Krein M.G., 1962, AM MATH SOC TRANSL, V10, P199
  • [6] Lucxemburg W.A.J., 1971, RIESZ SPACE, VI
  • [7] Protter M.H., 1967, MAXIMUM PRINCIPLE DI
  • [8] Computation of topological degree for nonlinear operators and applications
    Sun, Jingxian
    Liu, Xiaoying
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 4121 - 4130
  • [9] Nontrivial solutions of singular superlinear Sturm-Liouville problems
    Sun, JX
    Zhang, GW
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (02) : 518 - 536
  • [10] Sun JX, 1996, J MATH ANAL APPL, V202, P785