Boundary Regularity under Generalized Growth Conditions

被引:35
作者
Harjulehto, Petteri [1 ]
Hasto, Peter [1 ,2 ]
机构
[1] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
[2] Univ Oulu, Dept Math, FI-90014 Oulu, Finland
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2019年 / 38卷 / 01期
关键词
Dirichlet energy integral; regular boundary point; minimizer; superminimizer; generalized Orlicz space; Musielak-Orlicz spaces; the weak Harnack inequality; nonstandard growth; variable exponent; double phase; NONSTANDARD GROWTH; SOBOLEV SPACES; ORLICZ SPACES; QUASIMINIMIZERS; FUNCTIONALS; INEQUALITY;
D O I
10.4171/ZAA/1628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Dirichlet phi-energy integral with Sobolev boundary values. The function phi has generalized Orlicz growth. Special cases include variable exponent and double phase growths. We show that minimizers are regular at the boundary provided a weak capacity fatness condition is satisfied. This condition is satisfies for instance if the boundary is Lipschitz. The results are new even for Orlicz spaces.
引用
收藏
页码:73 / 96
页数:24
相关论文
共 27 条
[1]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[2]  
[Anonymous], 2001, Expo. Math.
[3]   Multivalued elliptic operators with nonstandard growth [J].
Avci, Mustafa ;
Pankov, Alexander .
ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (01) :35-48
[4]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[5]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[6]  
Björn A, 2011, EMS TRACTS MATH, V17, P1
[7]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[8]   Calderon-Zygmund estimates and non-uniformly elliptic operators [J].
Colombo, Maria ;
Mingione, Giuseppe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) :1416-1478
[9]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[10]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496