Existence of proper minimal surfaces of arbitrary topological type

被引:24
作者
Ferrer, Leonor [1 ]
Martin, Francisco [1 ]
Meeks, William H., III [2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Complete bounded minimal surface; Proper minimal immersion; Calabi-Yau conjectures; CONVEX-BODIES; CONJECTURES; CURVATURE; BEHAVIOR; R-3;
D O I
10.1016/j.aim.2012.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a domain D in R-3 which is convex (possibly all R-3) or which is smooth and bounded. Given any open surface M, we prove that there exists a complete, proper minimal immersion f: M -> D. Moreover, if D is smooth and bounded, then we prove that the immersion f: M -> D can be chosen so that the limit sets of distinct ends of M arc disjoint connected compact sets in partial derivative D. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:378 / 413
页数:36
相关论文
共 27 条
[11]  
Martin F., AM J MATH IN PRESS
[12]   Bounded domains which are universal for minimal surfaces [J].
Martin, Francisco ;
Meeks, William H., III ;
Nadirashvili, Nikolai .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (02) :455-461
[13]  
Martín F, 2006, COMMENT MATH HELV, V81, P699
[14]  
Martín F, 2005, DUKE MATH J, V128, P559, DOI 10.1215/S0012-7094-04-12835-0
[15]   The uniqueness of the helicoid [J].
Meeks, WH ;
Rosenberg, H .
ANNALS OF MATHEMATICS, 2005, 161 (02) :727-758
[16]   THE CLASSICAL PLATEAU-PROBLEM AND THE TOPOLOGY OF 3-DIMENSIONAL MANIFOLDS - THE EMBEDDING OF THE SOLUTION GIVEN BY DOUGLAS-MORREY AND AN ANALYTIC PROOF OF DEHN LEMMA [J].
MEEKS, WH ;
YAU, ST .
TOPOLOGY, 1982, 21 (04) :409-442
[17]  
MEEKS WH, 1981, DUKE MATH J, V48, P523
[18]   Uniqueness of the Riemann minimal examples [J].
Meeks, WH ;
Perez, J ;
Ros, A .
INVENTIONES MATHEMATICAE, 1998, 133 (01) :107-132
[19]  
MEEKS WH, PROPERLY EMBEDDED MI
[20]   Capacity and surface [J].
Minkowski, H .
MATHEMATISCHE ANNALEN, 1903, 57 :447-495