Existence of proper minimal surfaces of arbitrary topological type

被引:24
作者
Ferrer, Leonor [1 ]
Martin, Francisco [1 ]
Meeks, William H., III [2 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Complete bounded minimal surface; Proper minimal immersion; Calabi-Yau conjectures; CONVEX-BODIES; CONJECTURES; CURVATURE; BEHAVIOR; R-3;
D O I
10.1016/j.aim.2012.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a domain D in R-3 which is convex (possibly all R-3) or which is smooth and bounded. Given any open surface M, we prove that there exists a complete, proper minimal immersion f: M -> D. Moreover, if D is smooth and bounded, then we prove that the immersion f: M -> D can be chosen so that the limit sets of distinct ends of M arc disjoint connected compact sets in partial derivative D. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:378 / 413
页数:36
相关论文
共 27 条
[1]  
Alarcón A, 2008, GEOM FUNCT ANAL, V18, P1, DOI 10.1007/s00039-008-0650-2
[2]  
[Anonymous], COMMUN ANAL GEOM
[3]  
[Anonymous], EMBEDDED CALABI YAU
[4]  
Calabi E., 1966, P US JAP SEM DIFF GE, P170
[5]   The Calabi-Yau conjectures for embedded surfaces [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2008, 167 (01) :211-243
[6]   Topology and curvature of properly embedded minimal surfaces in 3-space [J].
Collin, P .
ANNALS OF MATHEMATICS, 1997, 145 (01) :1-31
[7]  
Farkas H.M., 1980, GRADUATE TEXTS MATH, V72
[8]   Complete nonorientable minimal surfaces in a ball of R3 [J].
Lopez, F. J. ;
Martin, Francisco ;
Morales, Santiago .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (09) :3807-3820
[9]  
LOPEZ FJ, 1991, J DIFFER GEOM, V33, P293
[10]   On the asymptotic behavior of a complete bounded minimal surface in R3 [J].
Martín, F ;
Morales, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) :3985-3994