A RELATION FOR GROMOV-WITTEN INVARIANTS OF LOCAL CALABI-YAU THREEFOLDS

被引:0
作者
Lau, Siu-Cheong [1 ]
Leung, Naichung Conan [2 ]
Wu, Baosen [3 ]
机构
[1] Univ Tokyo, Inst Phys & Math Universe, Tokyo 1138654, Japan
[2] Chinese Univ Hong Kong, Inst Math Sci, Unit 506, Shatin, Hong Kong, Peoples R China
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Gromov-Witten invariants; flop; toric Calabi-Yau; MIRROR SYMMETRY; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute certain open Gromov-Witten invariants for toric Calabi-Yau threefolds. The proof relies on a relation for ordinary Gromov-Witten invariants for threefolds under certain birational transformation, and a recent result of Kwokwai Chan.
引用
收藏
页码:943 / 956
页数:14
相关论文
共 19 条
[11]  
Gathmann A, 2001, J ALGEBRAIC GEOM, V10, P399
[12]   Gromov-Witten invariants of blow-ups along points and curves [J].
Hu, J .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) :709-739
[13]   Local Gromov-Witten invariants of blowups of Fano surfaces [J].
Hu, Jianxun .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) :1051-1060
[14]   Flops, motives, and invariance of quantum rings [J].
Lee, Yuan-Pin ;
Lin, Hui-Wen ;
Wang, Chin-Lung .
ANNALS OF MATHEMATICS, 2010, 172 (01) :243-290
[15]   From Special Lagrangian to Hermitian-Yang-Mills via Fourier-Mukai Transformt [J].
Leung, Naichung Conan ;
Yau, Shing-Tung ;
Zaslow, Eric .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 4 (06) :1319-1338
[16]  
Leung NC, 2005, COMMUN ANAL GEOM, V13, P287
[17]   Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds [J].
Li, AM ;
Ruan, YB .
INVENTIONES MATHEMATICAE, 2001, 145 (01) :151-218
[18]   Mirror symmetry is T-duality [J].
Strominger, A ;
Yau, ST ;
Zaslow, E .
NUCLEAR PHYSICS B, 1996, 479 (1-2) :243-259
[19]  
[No title captured]