A RELATION FOR GROMOV-WITTEN INVARIANTS OF LOCAL CALABI-YAU THREEFOLDS

被引:0
作者
Lau, Siu-Cheong [1 ]
Leung, Naichung Conan [2 ]
Wu, Baosen [3 ]
机构
[1] Univ Tokyo, Inst Phys & Math Universe, Tokyo 1138654, Japan
[2] Chinese Univ Hong Kong, Inst Math Sci, Unit 506, Shatin, Hong Kong, Peoples R China
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Gromov-Witten invariants; flop; toric Calabi-Yau; MIRROR SYMMETRY; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute certain open Gromov-Witten invariants for toric Calabi-Yau threefolds. The proof relies on a relation for ordinary Gromov-Witten invariants for threefolds under certain birational transformation, and a recent result of Kwokwai Chan.
引用
收藏
页码:943 / 956
页数:14
相关论文
共 19 条
[1]  
Auroux D., 2009, Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry, Surv. Differ. Geom., V13, P1, DOI [10.4310/SDG.2008.v13.n1.a1, DOI 10.4310/SDG.2008.V13.N1.A1]
[2]  
Auroux D., 2007, J. Gkova Geom. Topol, V1, P51
[3]  
Chan K.-W., J DIFFERENT IN PRESS
[4]   Mirror symmetry for toric Fano manifolds via SYZ transformations [J].
Chan, Kwokwai ;
Leung, Naichung Conan .
ADVANCES IN MATHEMATICS, 2010, 223 (03) :797-839
[5]  
Chiang T.-M., 1999, Adv. Theor. Math. Phys., V3, P495
[6]  
Cho CH, 2006, ASIAN J MATH, V10, P773
[7]   Arnold conjecture and Gromov-Witten invariant [J].
Fukaya, K ;
Ono, K .
TOPOLOGY, 1999, 38 (05) :933-1048
[8]  
Fukaya K, 2009, AMS/IP Stud. Adv. Math., V46
[9]  
Fukaya K., ARXIV10021660
[10]   LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS, I [J].
Fukaya, Kenji ;
Oh, Yong-Geun ;
Ohta, Hiroshi ;
Ono, Kaoru .
DUKE MATHEMATICAL JOURNAL, 2010, 151 (01) :23-174