A dissipatively stabilized Mott insulator of photons

被引:256
作者
Ma, Ruichao [1 ,2 ]
Saxberg, Brendan [1 ,2 ]
Owens, Clai [1 ,2 ]
Leung, Nelson [1 ,2 ]
Lu, Yao [1 ,2 ]
Simon, Jonathan [1 ,2 ]
Schuster, David I. [1 ,2 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Univ Chicago, James Frank Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
BOSE-EINSTEIN CONDENSATION; INTERACTING PHOTONS; QUANTUM SIMULATION; ENTANGLEMENT; GAS; LOCALIZATION;
D O I
10.1038/s41586-019-0897-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superconducting circuits are a competitive platform for quantum computation because they offer controllability, long coherence times and strong interactions-properties that are essential for the study of quantum materials comprising microwave photons. However, intrinsic photon losses in these circuits hinder the realization of quantum many-body phases. Here we use superconducting circuits to explore strongly correlated quantum matter by building a Bose-Hubbard lattice for photons in the strongly interacting regime. We develop a versatile method for dissipative preparation of incompressible many-body phases through reservoir engineering and apply it to our system to stabilize a Mott insulator of photons against losses. Site- and time-resolved readout of the lattice allows us to investigate the microscopic details of the thermalization process through the dynamics of defect propagation and removal in the Mott phase. Our experiments demonstrate the power of superconducting circuits for studying strongly correlated matter in both coherent and engineered dissipative settings. In conjunction with recently demonstrated superconducting microwave Chern insulators, we expect that our approach will enable the exploration of topologically ordered phases of matter.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 53 条
  • [11] BOSE-EINSTEIN CONDENSATION IN A GAS OF SODIUM ATOMS
    DAVIS, KB
    MEWES, MO
    ANDREWS, MR
    VANDRUTEN, NJ
    DURFEE, DS
    KURN, DM
    KETTERLE, W
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (22) : 3969 - 3973
  • [12] Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice
    Fitzpatrick, Mattias
    Sundaresan, Neereja M.
    Li, Andy C. Y.
    Koch, Jens
    Houck, Andrew A.
    [J]. PHYSICAL REVIEW X, 2017, 7 (01):
  • [13] In situ observation of incompressible Mott-insulating domains in ultracold atomic gases
    Gemelke, Nathan
    Zhang, Xibo
    Hung, Chen-Lung
    Chin, Cheng
    [J]. NATURE, 2009, 460 (7258) : 995 - U75
  • [14] Quantum phase transitions of light
    Greentree, Andrew D.
    Tahan, Charles
    Cole, Jared H.
    Hollenberg, Lloyd C. L.
    [J]. NATURE PHYSICS, 2006, 2 (12) : 856 - 861
  • [15] Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
    Greiner, M
    Mandel, O
    Esslinger, T
    Hänsch, TW
    Bloch, I
    [J]. NATURE, 2002, 415 (6867) : 39 - 44
  • [16] Relaxation and Prethermalization in an Isolated Quantum System
    Gring, M.
    Kuhnert, M.
    Langen, T.
    Kitagawa, T.
    Rauer, B.
    Schreitl, M.
    Mazets, I.
    Smith, D. Adu
    Demler, E.
    Schmiedmayer, J.
    [J]. SCIENCE, 2012, 337 (6100) : 1318 - 1322
  • [17] Microwave photonics with superconducting quantum circuits
    Gu, Xiu
    Kockum, Anton Frisk
    Miranowicz, Adam
    Liu, Yu-xi
    Nori, Franco
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 718 : 1 - 102
  • [18] Cooling and Autonomous Feedback in a Bose-Hubbard Chain with Attractive Interactions
    Hacohen-Gourgy, S.
    Ramasesh, V. V.
    De Grandi, C.
    Siddiqi, I.
    Girvin, S. M.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (24)
  • [19] Chemical potential for light by parametric coupling
    Hafezi, M.
    Adhikari, P.
    Taylor, J. M.
    [J]. PHYSICAL REVIEW B, 2015, 92 (17)
  • [20] Quantum simulation with interacting photons
    Hartmann, Michael J.
    [J]. JOURNAL OF OPTICS, 2016, 18 (10)