The mixed finite element method with one unknown per element

被引:2
|
作者
Younés, A
Mose, R
Ackerer, P
Chavent, G
机构
[1] Univ Strasbourg 1, Inst Mecan Fluides, CNRS, UMR 7507, F-67000 Strasbourg, France
[2] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
关键词
D O I
10.1016/S0764-4442(99)80258-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To solve the groundwater flow equations, we show how to produce a scheme with one unknown per element starting from a mixed formulation discretized with the Raviart-Thomas triangular elements of lowest order. We study the new formulation in the elliptic case with sink/source terms in order to use mixed finite elements with less unknowns without any numerical integration The last part of the paper is aimed to study the positive definiteness of the matrix obtained with this new formulation. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 50 条
  • [1] MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS
    Vohralik, Martin
    Wohlmuth, Barbara I.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (05): : 803 - 838
  • [2] An Arbitrary-Order Discontinuous Galerkin Method with One Unknown Per Element
    Li, Ruo
    Ming, Pingbing
    Sun, Ziyuan
    Yang, Zhijian
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 268 - 288
  • [3] An Arbitrary-Order Discontinuous Galerkin Method with One Unknown Per Element
    Ruo Li
    Pingbing Ming
    Ziyuan Sun
    Zhijian Yang
    Journal of Scientific Computing, 2019, 80 : 268 - 288
  • [4] A NEW FINITE ELEMENT SPACE FOR EXPANDED MIXED FINITE ELEMENT METHOD
    Chen, Jing
    Zhou, Zhaojie
    Chen, Huanzhen
    Wang, Hong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (05): : 817 - 841
  • [5] An approximation of semiconductor device by mixed finite element method and characteristics-mixed finite element method
    Yang, Qing
    Yuan, Yirang
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 407 - 424
  • [6] Mixed moving finite element method
    Zhao, Shengjie
    Chen, Yufu
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 381 - 391
  • [7] An approximation of semiconductor device of heat conduction by mixed finite element method and characteristics-mixed finite element method
    Yang, Qing
    Yuan, Yirang
    APPLIED NUMERICAL MATHEMATICS, 2013, 70 : 42 - 57
  • [8] Extrapolation of the Nedelec element for the Maxwell equations by the mixed finite element method
    Xie, Hehu
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (02) : 135 - 145
  • [9] Mixed element formulation for the finite element-boundary integral method
    Meese, J
    Kempel, LC
    Schneider, SW
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2006, 21 (01): : 51 - 62
  • [10] A mixed finite element boundary element method in an analysis of piezoceramic transducers
    Balabaev, SM
    Ivina, NF
    ACOUSTICAL PHYSICS, 1996, 42 (02) : 149 - 154