Robust dynamic community detection with applications to human brain functional networks

被引:38
作者
Martinet, L-E [1 ]
Kramer, M. A. [2 ,3 ]
Viles, W. [2 ]
Perkins, L. N. [4 ]
Spencer, E. [4 ]
Chu, C. J. [1 ]
Cash, S. S. [1 ]
Kolaczyk, E. D. [2 ]
机构
[1] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[2] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[3] Boston Univ, Ctr Syst Neurosci, Boston, MA 02215 USA
[4] Boston Univ, Grad Program Neurosci, Boston, MA 02215 USA
关键词
MODULAR ORGANIZATION; CONNECTIVITY; EPILEPSY; RECONFIGURATION; CONNECTOME; EMERGENCE; MOTIFS;
D O I
10.1038/s41467-020-16285-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While current technology permits inference of dynamic brain networks over long time periods at high temporal resolution, the detailed structure of dynamic network communities during human seizures remains poorly understood. We introduce a new methodology that addresses critical aspects unique to the analysis of dynamic functional networks inferred from noisy data. We propose a dynamic plex percolation method (DPPM) that is robust to edge noise, and yields well-defined spatiotemporal communities that span forward and backwards in time. We show in simulation that DPPM outperforms existing methods in accurately capturing certain stereotypical dynamic community behaviors in noisy situations. We then illustrate the ability of this method to track dynamic community organization during human seizures, using invasive brain voltage recordings at seizure onset. We conjecture that application of this method will yield new targets for surgical treatment of epilepsy, and more generally could provide new insights in other network neuroscience applications.
引用
收藏
页数:13
相关论文
共 58 条
  • [1] [Anonymous], [No title captured]
  • [2] [Anonymous], 2019, ARXIV160806196CONDMA
  • [3] Network neuroscience
    Bassett, Danielle S.
    Sporns, Olaf
    [J]. NATURE NEUROSCIENCE, 2017, 20 (03) : 353 - 364
  • [4] Learning-induced autonomy of sensorimotor systems
    Bassett, Danielle S.
    Yang, Muzhi
    Wymbs, Nicholas F.
    Grafton, Scott T.
    [J]. NATURE NEUROSCIENCE, 2015, 18 (05) : 744 - +
  • [5] Task-Based Core-Periphery Organization of Human Brain Dynamics
    Bassett, Danielle S.
    Wymbs, Nicholas F.
    Rombach, M. Puck
    Porter, Mason A.
    Mucha, Peter J.
    Grafton, Scott T.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
  • [6] Robust detection of dynamic community structure in networks
    Bassett, Danielle S.
    Porter, Mason A.
    Wymbs, Nicholas F.
    Grafton, Scott T.
    Carlson, Jean M.
    Mucha, Peter J.
    [J]. CHAOS, 2013, 23 (01)
  • [7] Dynamic reconfiguration of human brain networks during learning
    Bassett, Danielle S.
    Wymbs, Nicholas F.
    Porter, Mason A.
    Mucha, Peter J.
    Carlson, Jean M.
    Grafton, Scott T.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (18) : 7641 - 7646
  • [8] Betzel RF, 2017, NETW NEUROSCI, V1, P42, DOI [10.1162/NETN_a_00002, 10.1162/netn_a_00002]
  • [9] Multi-scale brain networks
    Betzel, Richard F.
    Bassett, Danielle S.
    [J]. NEUROIMAGE, 2017, 160 : 73 - 83
  • [10] Positive affect, surprise, and fatigue are correlates of network flexibility
    Betzel, Richard F.
    Satterthwaite, Theodore D.
    Gold, Joshua I.
    Bassett, Danielle S.
    [J]. SCIENTIFIC REPORTS, 2017, 7