Atomic layer deposition for fabrication of ytterbium doped fibers

被引:0
|
作者
Montiel i Ponsoda, Joan. J. [1 ]
Norin, Lars [2 ]
Bosund, Markus [3 ]
Ye, Changgeng [4 ]
Soderlund, Mikko J. [3 ]
Tervonen, Ari [1 ]
Honkanen, Seppo [1 ,5 ]
机构
[1] Aalto Univ, Sch Elect Engn, Tietotie 3, FIN-02150 Espoo, Finland
[2] Acreo Fiber Lab, SE-82442 Hudiksvall, Sweden
[3] Beneq Oy, FIN-01510 Vantaa, Finland
[4] nLIGHT Corp, FIN-08500 Lohja, Finland
[5] Univ Eastern Finland, Dep Phys & Math, Joensuu, Finland
关键词
Ytterbium; doped fiber; fiber laser; atomic layer deposition; double cladding; RARE-EARTH INCORPORATION;
D O I
10.1117/12.908725
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Atomic layer deposition (ALD) was used to fabricate an ytterbium (Yb)-doped silica fiber in combination with the conventional modified chemical vapor deposition (MCVD) method. An MCVD soot-preform with a porous layer of SiO2 doped with GeO2 was coated with layers of Yb2O3 and Al2O3 prior to sintering, using the ALD method. ALD is a surface controlled CVD-type process enabling thin film deposition over large substrates with good thickness control, uniformity and high conformality. A materials analysis study showed that the dopants successfully penetrated the full thickness of 320 mu m of the soot layer. Preliminary preform and fiber experiments on refractive index profiles, background losses, lifetime and the characteristic gain-loss curve were performed demonstrating the potential of this method for fabricating Yb-doped fibers with high concentration of dopants.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Fabrication of ultrathin suspended membranes from atomic layer deposition films
    Elowson, Michael J.
    Dhall, Rohan
    Schwartzberg, Adam
    Chang, Stephanie Y.
    Tommasini, Vittoria
    Alam, Sardar B.
    Chan, Emory M.
    Cabrini, Stefano
    Aloni, Shaul
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2022, 40 (02):
  • [32] Liquid atomic layer deposition as emergent technology for the fabrication of thin films
    Graniel, Octavio
    Puigmarti-Luis, Josep
    Munoz-Rojas, David
    DALTON TRANSACTIONS, 2021, 50 (19) : 6373 - 6381
  • [33] Recent progress in fabrication of high efficient catalysts by atomic layer deposition
    Gao Y.
    Xu D.
    Wang S.
    Zhu D.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (08): : 4242 - 4252
  • [34] Fabrication of iron carbide by plasma-enhanced atomic layer deposition
    Tian, Xu
    Zhang, Xiangyu
    Hu, Yulian
    Liu, Bowen
    Yuan, Yuxia
    Yang, Lizhen
    Chen, Qiang
    Liu, Zhongwei
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (07) : 813 - 821
  • [35] Fabrication and Characterization of Lead Sulfide Thin Films by Atomic Layer Deposition
    Dasgupta, Neil P.
    Walch, Stephen P.
    Prinz, Fritz B.
    ATOMIC LAYER DEPOSITION APPLICATIONS 4, 2008, 16 (04): : 29 - 36
  • [36] Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition
    Scharrer, M
    Wu, X
    Yamilov, A
    Cao, H
    Chang, RPH
    APPLIED PHYSICS LETTERS, 2005, 86 (15) : 1 - 3
  • [37] Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching
    Feng, Junbo
    Chen, Yao
    Blair, John
    Kurt, Hamza
    Hao, Ran
    Citrin, D. S.
    Summers, Christopher J.
    Zhou, Zhiping
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (02): : 568 - 572
  • [38] Luminescence properties of lanthanide and ytterbium lanthanide titanate thin films grown by atomic layer deposition
    Hansen, Per-Anders
    Fjellvag, Helmer
    Finstad, Terje G.
    Nilsen, Ola
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (01):
  • [39] Deposition of Al doped ZnO layers with various electrical types by atomic layer deposition
    Ahn, Cheol Hyoun
    Kim, Hyoungsub
    Cho, Hyung Koun
    THIN SOLID FILMS, 2010, 519 (02) : 747 - 750
  • [40] Direct fabrication of NbS2 nanoflakes on carbon fibers by atomic layer deposition for ultrasensitive cardiac troponin I detection
    Huang, Yazhou
    Zhang, Yunfei
    Lv, Junyan
    Shao, Yinfeng
    Yang, Dongfang
    Cong, Yuan
    NANOSCALE ADVANCES, 2023, 5 (03): : 830 - 839