Numerical implementation of the eXtended Finite Element Method for dynamic crack analysis

被引:40
作者
Nistor, Ionel [1 ]
Pantale, Olivier [1 ]
Caperaa, Serge [1 ]
机构
[1] LGPCMAO ENIT, F-65016 Tarbes, France
关键词
partition of unity; eXtended finite element method; finite element programming; dynamic crack propaption; dynamic energy release rate;
D O I
10.1016/j.advengsoft.2007.06.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A numerical implementation of the eXtended Finite Element Method (X-FEM) to analyze crack propagation ill a structure under dynamic loading is presented ill this paper. The arbitrary crack is treated by the X-FEM method without re-meshing but using an enrichmcntof the classical displacement-based finite element approximation ill the framework of the partition Of unity method. Several algo-7 rithms have been implemented, within an oriented object framework ill C++, ill the]ionic made explicit FEM code. The new module, called DynaCrack, included ill the dynamic FEM code DynELA, evaluates the crack geometry, the propagation of the crack and allow the post-proccssilig of the numerical results. The module Solves the system of discrete equations using an explicit integration scheme. Sonic numerical examples illustrating the main features and the computational efficiency of the DynaCrack module for dynamic crack propagation are presented ill the last section of the paper. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:573 / 587
页数:15
相关论文
共 37 条
[1]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[2]  
2-N
[3]   A FINITE-ELEMENT WITH EMBEDDED LOCALIZATION ZONES [J].
BELYTSCHKO, T ;
FISH, J ;
ENGELMANN, BE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 70 (01) :59-89
[4]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[5]  
2-S
[6]  
Belytschko T, 1996, INT J NUMER METH ENG, V39, P923, DOI 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO
[7]  
2-W
[8]   Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment [J].
Belytschko, T ;
Chen, H ;
Xu, JX ;
Zi, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (12) :1873-1905
[9]   Computational modelling of impact damage in brittle materials [J].
Camacho, GT ;
Ortiz, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1996, 33 (20-22) :2899-2938
[10]   A local space-time discontinuous finite element method [J].
Chessa, J ;
Belytschko, T .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) :1325-1343