Wavelet characterization of local Muckenhoupt weighted Lebesgue spaces with variable exponent

被引:4
作者
Izuki, Mitsuo [1 ]
Nogayama, Toru [2 ]
Noi, Takahiro [2 ]
Sawano, Yoshihiro [3 ,4 ]
机构
[1] Tokyo City Univ, Fac Liberal Arts & Sci, Setagaya Ku, 1-28-1 Tamadutsumi, Tokyo 1588557, Japan
[2] Tokyo Metropolitan Univ, Dept Math Sci, Hachioji, Tokyo 1920397, Japan
[3] Chuo Univ, Grad Sch Sci & Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo, Japan
[4] Peoples Friendship Univ Russia, Moscow, Russia
基金
日本学术振兴会;
关键词
MAXIMAL OPERATOR; MODULAR INEQUALITIES;
D O I
10.1016/j.na.2020.111930
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to characterize local Muckenhoupt weighted Lebesgue spaces with variable exponent by compactly supported smooth wavelets. We also investigate necessary and sufficient conditions for the corresponding modular inequalities to hold. One big achievement is that the weights with exponential growth can be handled in the framework of variable exponents. © 2020
引用
收藏
页数:14
相关论文
共 40 条
[1]  
[Anonymous], 2014, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation,, DOI [DOI 10.1007/978-3-0348-0648-0_17, DOI 10.1007/978-3-0348-0648-0-17]
[2]  
BENNETT C., 1988, Interpolation of Operators, V129
[3]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[4]  
Cruz-Uribe D, 2004, ANN ACAD SCI FENN-M, V29, P247
[5]   Weighted norm inequalities for the maximal operator on variable Lebesgue spaces [J].
Cruz-Uribe, D. ;
Fiorenza, A. ;
Neugebauer, C. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :744-760
[6]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[7]   THE MAXIMAL OPERATOR ON WEIGHTED VARIABLE LEBESGUE SPACES [J].
Cruz-Uribe, David ;
Diening, Lars ;
Hasto, Peter .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) :361-374
[8]  
Cruz-Uribe DV, 2011, OPER THEORY ADV APPL, V215, P3, DOI 10.1007/978-3-0348-0072-3
[9]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[10]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996