A note on optimal systems for the heat equation

被引:59
作者
Chou, KS [1 ]
Li, GX
Qu, CZ
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
[3] Univ Salamanca, Area Fis Teor, E-37008 Salamanca, Spain
关键词
Lie group of symmetry; heat equation; optimal system; invariant; adjoint representation;
D O I
10.1006/jmaa.2001.7579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A rigorous proof of the optimality of one-to-five-parameter systems for the symmetry group of the one-dimensional heat equation is given. (C) 2001 Academic Press.
引用
收藏
页码:741 / 751
页数:11
相关论文
共 9 条
[1]  
[Anonymous], 1994, LIE GROUP ANAL DIFFE
[2]  
CHOU KS, IN PRESS COMM ANAL G
[3]  
CHOU KS, UNPUB OPTIMAL SYSTEM
[4]   GROUP-INVARIANT SOLUTIONS AND OPTIMAL SYSTEMS FOR MULTIDIMENSIONAL HYDRODYNAMICS [J].
COGGESHALL, SV ;
MEYERTERVEHN, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) :3585-3601
[5]  
Ibragimov NH, 1984, Transformation groups applied to mathematical physics, V3, DOI DOI 10.1007/978-94-009-5243-0
[6]  
Olver PJ., 1986, Applications of Lie groups to differential equations
[7]  
Ovsiannikov L. V. E., 1982, Group analysis of differential equations
[8]   CONTINUOUS SUBGROUPS OF FUNDAMENTAL GROUPS OF PHYSICS .1. GENERAL METHOD AND POINCARE GROUP [J].
PATERA, J ;
WINTERNITZ, P ;
ZASSENHAUS, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (08) :1597-1614
[9]   INVARIANTS OF REAL LOW DIMENSION LIE-ALGEBRAS [J].
PATERA, J ;
SHARP, RT ;
WINTERNITZ, P ;
ZASSENHAUS, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :986-994