Convergence theorem for zeros of generalized Lipschitz generalized PHI-quasi-accretive operators

被引:33
作者
Chidume, CE [1 ]
Chidume, CO
机构
[1] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词
generalized Lipschitz maps; generalized Phi-quasi-accretive maps; generalized-Phi-hemicontractive maps; uniformly smooth real Banach spaces;
D O I
10.1090/S0002-9939-05-07954-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a uniformly smooth real Banach space and let A : E -> E be a mapping with N(A) not equal phi. Suppose A is a generalized Lipschitz generalized Phi-quasi-accretive mapping. Let {a(n)}, {b(n)}, and {c(n)} be real sequences in [0,1] satisfying the following conditions: (i) a(n) + b(n) + c(n) = 1; (ii) similar to(b(n) + c(n)) = 8; (iii) similar to c(n) < ;infinity (iv) lim b(n) = 0. Let {x(n)} be generated iteratively from arbitrary x(O) is an element of E by x(n+1) = a(n)x(n) + b(n)Sx(n) + c(n)u(n), n >= 0, where S : E -> E is defined by Sx := x - Ax for all x is an element of E and {u(n)} is an arbitrary bounded sequence in E. Then, there exists gamma o is an element of R such that if b(n) + c(n) <= gamma o for all n >= 0, the sequence {x(n)} converges strongly to the unique solution of the equation Au = 0. A related result deals with approximation of the unique fixed point of a generalized Lipschitz and generalized o-hemicontractive mapping.
引用
收藏
页码:243 / 251
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1976, P S PURE MATH 2
[2]   Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces [J].
Chang, SS ;
Cho, YJ ;
Lee, BS ;
Jung, JS ;
Kang, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 224 (01) :149-165
[3]  
Chang SS., 2002, ITERATIVE METHODS NO
[4]   Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps [J].
Chidume, CE ;
Zegeye, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :831-840
[5]   Iterative approximation of fixed points of Lipschitz pseudocontractive maps [J].
Chidume, CE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2245-2251
[6]  
Deimling K., 1980, NONLINEAR FUNCTIONAL
[7]  
GU F, 2001, NE MATH J, V17, P340
[8]  
Hirano N, 2003, COMPUT MATH APPL, V46, P1461, DOI [10.1016/S0898-1221(03)90183-0, 10.1016/S0898-1221(03)00375-4]
[9]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150
[10]  
ISHIKAWA YX, 1998, J MATH ANAL APPL, V224, DOI UNSP MR1632966 (99G:47144)