Macromolecular crowding explains overflow metabolism in cells

被引:43
作者
Vazquez, Alexei [1 ]
Oltvai, Zoltan N. [2 ,3 ]
机构
[1] Beatson Inst Canc Res, Glasgow, Lanark, Scotland
[2] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA USA
[3] Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Pittsburgh, PA USA
关键词
ESCHERICHIA-COLI;
D O I
10.1038/srep31007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Overflow metabolism is a metabolic phenotype of cells characterized by mixed oxidative phosphorylation (OxPhos) and fermentative glycolysis in the presence of oxygen. Recently, it was proposed that a combination of a protein allocation constraint and a higher proteome fraction cost of energy generation by OxPhos relative to fermentation form the basis of overflow metabolism in the bacterium, Escherichia coli. However, we argue that the existence of a maximum or optimal macromolecular density is another essential requirement. Here we re-evaluate our previous theory of overflow metabolism based on molecular crowding following the proteomic fractions formulation. We show that molecular crowding is a key factor in explaining the switch from OxPhos to overflow metabolism.
引用
收藏
页数:7
相关论文
共 15 条
[1]   Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters [J].
Adadi, Roi ;
Volkmer, Benjamin ;
Milo, Ron ;
Heinemann, Matthias ;
Shlomi, Tomer .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (07)
[2]   Overflow metabolism in Escherichia coli results from efficient proteome allocation [J].
Basan, Markus ;
Hui, Sheng ;
Okano, Hiroyuki ;
Zhang, Zhongge ;
Shen, Yang ;
Williamson, James R. ;
Hwa, Terence .
NATURE, 2015, 528 (7580) :99-+
[3]   Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity [J].
Beg, Q. K. ;
Vazquez, A. ;
Ernst, J. ;
de Menezes, M. A. ;
Bar-Joseph, Z. ;
Barabasi, A.-L. ;
Oltvai, Z. N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (31) :12663-12668
[4]  
Pollack GH., 2001, Cells, Gels and the Engines of Life
[5]   Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect [J].
Shlomi, Tomer ;
Benyamini, Tomer ;
Gottlieb, Eyal ;
Sharan, Roded ;
Ruppin, Eytan .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (03)
[6]   EFFECT OF PARTICLE SIZE DISTRIBUTION ON PACKING DENSITY [J].
SOHN, HY ;
MORELAND, C .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1968, 46 (03) :162-&
[7]   Redox balance is key to explaining full vs. partial switching to low-yield metabolism [J].
van Hoek, Milan J. A. ;
Merks, Roeland M. H. .
BMC SYSTEMS BIOLOGY, 2012, 6
[8]   Impact of the solvent capacity constraint on E. coli metabolism [J].
Vazquez, Alexei ;
Beg, Qasim K. ;
deMenezes, Marcio A. ;
Ernst, Jason ;
Bar-Joseph, Ziv ;
Barabasi, Albert-Loszlo ;
Boros, Laszlo G. ;
Oltvai, Zoltan N. .
BMC SYSTEMS BIOLOGY, 2008, 2
[9]   Molecular Crowding Defines a Common Origin for the Warburg Effect in Proliferating Cells and the Lactate Threshold in Muscle Physiology [J].
Vazquez, Alexei ;
Oltvai, Zoltan N. .
PLOS ONE, 2011, 6 (04)
[10]   Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited [J].
Vazquez, Alexei ;
Liu, Jiangxia ;
Zhou, Yi ;
Oltvai, Zoltan N. .
BMC SYSTEMS BIOLOGY, 2010, 4