Growth and treatment of hydrogenated amorphous carbon nanoparticles in a low-pressure plasma

被引:5
作者
Asnaz, Oguz Han [1 ]
Kohlmann, Niklas [2 ]
Folger, Hauke [1 ]
Greiner, Franko [1 ]
Benedikt, Jan [1 ]
机构
[1] Univ Kiel, Inst Expt & Appl Phys, D-24098 Kiel, Germany
[2] Univ Kiel, Fac Engn, Kiel, Germany
关键词
FTIR; infrared absorption spectroscopy (IRAS); low-pressure discharges; particles; surface modification; HYDROCARBON FILMS; DUST; CLOUD;
D O I
10.1002/ppap.202100190
中图分类号
O59 [应用物理学];
学科分类号
摘要
A parallel-plate, low-pressure plasma for fundamental nanodusty plasma research is used to grow hydrogenated amorphous carbon nanoparticles using an argon-acetylene gas mixture. The particles stay confined in the volume of the argon plasma after turning off the C 2 H 2 gas flow and the effects of prolonged treatment with noble gas (Ar) and reactive gas mixtures (Ar/ H 2, Ar/ D 2, or Ar/ O 2) are investigated using in situ infrared absorption spectroscopy. Additionally, ex situ scanning electron microscopy imaging of extracted nanoparticles is used to analyze their size and surface morphology. In 45 min of argon treatment, a size increase of about 50% is seen together with a decrease in sp 2 CH x bonds and an increase in CO bonds, indicating incorporation of oxygen from gas impurities into the particle material. All reactive gas mixtures lead to the expected etching of the nanoparticle material without any exchange reactions between gas-phase deuterium and surface-bonded hydrogen atoms. These results are important for in situ studies of nanoparticle clouds such as dust density wave diagnostics, but they also provide fundamental information about plasma interaction with a-C:H material.
引用
收藏
页数:8
相关论文
共 37 条
[1]  
Asahina S., 2012, MICROSC ANAL, V7, P12
[2]   Size and density evolution of a single microparticle embedded in a plasma [J].
Asnaz, Oguz Han ;
Jung, Hendrik ;
Greiner, Franko ;
Piel, Alexander .
PHYSICS OF PLASMAS, 2017, 24 (08)
[3]   Plasma-chemical reactions: low pressure acetylene plasmas [J].
Benedikt, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (04)
[4]   Mass changes of microparticles in a plasma observed by a phase-resolved resonance method [J].
Carstensen, Jan ;
Jung, Hendrik ;
Greiner, Franko ;
Piel, Alexander .
PHYSICS OF PLASMAS, 2011, 18 (03)
[5]   Modification of the micro- and nanotopography of several polymers by plasma treatments [J].
Coen, MC ;
Lehmann, R ;
Groening, P ;
Schlapbach, L .
APPLIED SURFACE SCIENCE, 2003, 207 (1-4) :276-286
[6]   A minimally invasive electrostatic particle extractor for nanodusty plasmas and its application for the verification of in situ Mie polarimetry [J].
Dworschak, Maren ;
Asnaz, Oguz Han ;
Greiner, Franko .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (03)
[7]   Direct observation of surface structure of mesoporous silica with low acceleration voltage FE-SEM [J].
Endo, Akira ;
Yamada, Mitsuhiko ;
Kataoka, Sho ;
Sano, Tsuneji ;
Inagi, Yuki ;
Miyaki, Atsushi .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 357 (1-3) :11-16
[8]   DUSTY PLASMAS IN THE SOLAR-SYSTEM [J].
GOERTZ, CK .
REVIEWS OF GEOPHYSICS, 1989, 27 (02) :271-292
[9]   Diagnostics and characterization of nanodust and nanodusty plasmas [J].
Greiner, Franko ;
Melzer, Andre ;
Tadsen, Benjamin ;
Groth, Sebastian ;
Killer, Carsten ;
Kirchschlager, Florian ;
Wieben, Frank ;
Pilch, Iris ;
Krueger, Harald ;
Block, Dietmar ;
Piel, Alexander ;
Wolf, Sebastian .
EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (05)
[10]   Spatio-temporally resolved investigations of layered particle growth in a reactive argon-acetylene plasma [J].
Groth, Sebastian ;
Greiner, Franko ;
Piel, Alexander .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2019, 28 (11)