Interplay of Wrinkles, Strain, and Lattice Parameter in Graphene on Iridium

被引:129
作者
Hattab, Hichem [1 ,2 ]
N'Diaye, Alpha T. [3 ]
Wall, Dirk [1 ,2 ]
Klein, Claudius [1 ,2 ]
Jnawali, Giriraj [1 ,2 ]
Coraux, Johann [4 ,5 ]
Busse, Carsten [3 ]
van Gastel, Raoul [6 ]
Poelsema, Bene [6 ]
Michely, Thomas [3 ]
Heringdorf, Frank-J. Meyer Zu [1 ,2 ]
Horn-von Hoegen, Michael [1 ,2 ]
机构
[1] Univ Duisburg Essen, Dept Phys, D-47057 Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, D-47057 Duisburg, Germany
[3] Univ Cologne, Dept Phys, D-50937 Cologne, Germany
[4] CNRS, Inst NEEL, F-38042 Grenoble 9, France
[5] Univ Grenoble 1, F-38042 Grenoble 9, France
[6] Univ Twente, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
关键词
Graphene; strain state; wrinkle formation; LEED; iridium; ENERGY-ELECTRON DIFFRACTION; CHEMICAL-VAPOR-DEPOSITION; EPITAXIAL GRAPHENE; THERMAL-EXPANSION; LAYERS; GROWTH; TRANSISTORS; GRAPHITE; FILMS;
D O I
10.1021/nl203530t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Following graphene growth by thermal decomposition of ethylene on Ir(111) at high temperatures we analyzed the si:rain state and the wrinkle formation kinetics as function of temperature. Using the moire spot separation in a low energy electron diffraction pattern as a magnifying mechanism for the difference in the lattice parameters between Ir and graphene, we achieved an unrivaled relative precision of +/- 0.1 pm for the graphene lattice parameter. Our data reveals a characteristic hysteresis of the graphene lattice parameter that is explained by the interplay of reversible wrinkle formation and film strain, We show that graphene on Ir(111) always exhibits residual compressive strain at room temperature. Our results provide important guidelines for strategies to avoid wrinkling.
引用
收藏
页码:678 / 682
页数:5
相关论文
共 40 条
[1]   Insights into few-layer epitaxial graphene growth on 4H-SiC(000(1)over-bar substrates from STM studies [J].
Biedermann, Laura B. ;
Bolen, Michael L. ;
Capano, Michael A. ;
Zemlyanov, Dmitry ;
Reifenberger, Ronald G. .
PHYSICAL REVIEW B, 2009, 79 (12)
[2]   Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC [J].
Cambaz, Z. Goknur ;
Yushin, Gleb ;
Osswald, Sebastian ;
Mochalin, Vadym ;
Goyotsi, Yury .
CARBON, 2008, 46 (06) :841-849
[3]   Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation [J].
Chae, Seung Jin ;
Guenes, Fethullah ;
Kim, Ki Kang ;
Kim, Eun Sung ;
Han, Gang Hee ;
Kim, Soo Min ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Park, Min Ho ;
Yang, Cheol Woong ;
Pribat, Didier ;
Lee, Young Hee .
ADVANCED MATERIALS, 2009, 21 (22) :2328-+
[4]   Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments [J].
Chen, Shanshan ;
Moore, Arden L. ;
Cai, Weiwei ;
Suk, Ji Won ;
An, Jinho ;
Mishra, Columbia ;
Amos, Charles ;
Magnuson, Carl W. ;
Kang, Junyong ;
Shi, Li ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (01) :321-328
[5]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[6]   Growth of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Engler, Martin ;
Busse, Carsten ;
Wall, Dirk ;
Buckanie, Niemma ;
Heringdorf, Frank-j Meyer Zu ;
van Gastel, Raoul ;
Poelsema, Bene ;
Michely, Thomas .
NEW JOURNAL OF PHYSICS, 2009, 11
[7]  
Creath K., 1992, OPTICAL SHOP TESTING, P653
[8]  
Dwight E. G, 1972, PHYS HDB, V1
[9]  
ECKERLIN P, 1971, LANDOLTBORNSTEIN NUM, V6
[10]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]