Implementation of Quantum Algorithms via Fast Three-Rydberg-Atom CCZ Gates

被引:2
作者
Tang, Shiqing [1 ]
Yang, Chong [2 ]
Li, Dongxiao [2 ]
Shao, Xiaoqiang [3 ,4 ,5 ]
机构
[1] Hengyang Normal Univ, Coll Phys & Elect Engn, Hengyang 421002, Peoples R China
[2] Shenyang Normal Univ, Coll Phys Sci & Technol, Shenyang 110034, Peoples R China
[3] Northeast Normal Univ, Ctr Quantum Sci & Sch Phys, Changchun 130024, Peoples R China
[4] Northeast Normal Univ, Ctr Adv Optoelect Funct Mat Res, Minist Educ, Changchun 130024, Peoples R China
[5] Northeast Normal Univ, Minist Educ, Key Lab UV Light Emitting Mat & Technol, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
multiqubit controlled gate; Rydberg blockade; quantum algorithm; SECRET SHARING PROTOCOL; ONE-STEP IMPLEMENTATION; GROVER ALGORITHM; TOFFOLI GATE; STATE; INFORMATION;
D O I
10.3390/e24101371
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multiqubit CCZ gates form one of the building blocks of quantum algorithms and have been involved in achieving many theoretical and experimental triumphs. Designing a simple and efficient multiqubit gate for quantum algorithms is still by no means trivial as the number of qubits increases. Here, by virtue of the Rydberg blockade effect, we propose a scheme to rapidly implement a three-Rydberg-atom CCZ gate via a single Rydberg pulse, and successfully apply the gate to realize the three-qubit refined Deutsch-Jozsa algorithm and three-qubit Grover search. The logical states of the three-qubit gate are encoded to the same ground states to avoid an adverse effect of the atomic spontaneous emission. Furthermore, there is no requirement for individual addressing of atoms in our protocol.
引用
收藏
页数:9
相关论文
共 68 条
[1]   Quantum Algorithms for Quantum Chemistry and Quantum Materials Science [J].
Bauer, Bela ;
Bravyi, Sergey ;
Motta, Mario ;
Chan, Garnet Kin-Lic .
CHEMICAL REVIEWS, 2020, 120 (22) :12685-12717
[2]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[3]  
Beterov II, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.052504
[4]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[5]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[6]   Variational Quantum Fidelity Estimation [J].
Cerezo, M. ;
Poremba, Alexander ;
Cincio, Lukasz ;
Coles, Patrick J. .
QUANTUM, 2020, 4
[7]   Implementation of a three-qubit Toffoli gate in a single step [J].
Chen, Ai Min ;
Cho, Sam Young ;
Kim, Mun Dae .
PHYSICAL REVIEW A, 2012, 85 (03)
[8]   Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits [J].
Chow, Jerry M. ;
Corcoles, A. D. ;
Gambetta, Jay M. ;
Rigetti, Chad ;
Johnson, B. R. ;
Smolin, John A. ;
Rozen, J. R. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (08)
[9]   Experimental realization of a quantum algorithm [J].
Chuang, IL ;
Vandersypen, LMK ;
Zhou, XL ;
Leung, DW ;
Lloyd, S .
NATURE, 1998, 393 (6681) :143-146
[10]   Deutsch-Jozsa algorithm as a test of quantum computation [J].
Collins, D ;
Kim, KW ;
Holton, WC .
PHYSICAL REVIEW A, 1998, 58 (03) :R1633-R1636