Hankel operators in the Bergman space and Schatten p-classes:: The case 1<p<2

被引:10
作者
Xia, JB [1 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
关键词
D O I
10.1090/S0002-9939-01-06217-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
K. Zhu proved in Amer. J. Math. 113 (1991), 147-167, that, for 2 less than or equal to p < <infinity>, the Hankel operators H-f and H-(f) over bar on the Bergman space belong to the Schatten class C-p if and only if the mean oscillation MO(f)(z) = {<(<vertical bar>f \ (2))over tilde>(z) - \(f) over tilde (z)\ (2)}(1/2) belongs to L-p (D,(1 - \z \ (2))(-2)dA(z)). In this paper we prove that the same result also holds when 1 < p < 2.
引用
收藏
页码:3559 / 3567
页数:9
相关论文
共 6 条
[1]   HANKEL-OPERATORS ON WEIGHTED BERGMAN SPACES [J].
ARAZY, J ;
FISHER, SD ;
PEETRE, J .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (06) :989-1053
[2]  
Li Huiping, 1995, Contemp. Math., V185, P237
[3]   CHARACTERIZATIONS OF CERTAIN CLASSES OF HANKEL-OPERATORS ON THE BERGMAN SPACES OF THE UNIT DISK [J].
LUECKING, DH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (02) :247-271
[5]  
ZHU K, 1990, OPERATOR THEORY FUNC