Spatial distribution analysis of two-dimensional microlens arrays by finite element method

被引:0
作者
Gonzalez-Romero, R. [1 ]
Garcia-Torales, G. [1 ]
Strojnik, M. [2 ]
机构
[1] Univ Guadalajara, Elect Dept, Av Revoluc 1500, Guadalajara 44430, Jalisco, Mexico
[2] Ctr Invest Opt AC Mexico, Loma del Bosque 115, Guanajuato 37150, Mexico
来源
INFRARED REMOTE SENSING AND INSTRUMENTATION XXIX | 2021年 / 11830卷
关键词
Finite element method; microlens array; FEM; Zernike polynomials; FABRICATION;
D O I
10.1117/12.2595081
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A microlens array is a junction of small-sized lenses distributed one-with-other for decreasing the sizes in some sensors or CCD for applications where portability is mandatory. However, working with circular apertures reduces the arrangement efficiency due to the distance between each element. Using several parameters, as spatial distributions, optical apertures, and materials for the microlenses, prevents the light incidence on non-photosensitive areas due to diffraction. The study of these parameters employing the finite element method (FEM) is a complementary tool to arrangement optimization. We present an investigation based on FEM for microlens arrays optimization in two dimensions, where the arrangement, geometry, and materials for the array are changed. The analysis can be useful to estimate the incidence on a non-photosensitive surface due to diffraction of any aperture geometry, or lens material, knowing the focal length and the wavefront transmitted, as the previous step to the final elaboration.
引用
收藏
页数:10
相关论文
共 14 条
  • [1] COMSOL, 2018, RAY OPT MOD US GUID
  • [2] Gabor D., 1999, Principles of optics
  • [3] Telescope array for extrasolar planet detection from the far side of the Moon
    Galan, Maximilian
    Strojnik, Marija
    Garcia-Torales, Guillermo
    Kirk, Maureen S.
    [J]. APPLIED OPTICS, 2016, 55 (34) : D173 - D180
  • [4] Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses
    Ghosh, G
    [J]. APPLIED OPTICS, 1997, 36 (07): : 1540 - 1546
  • [5] Turning a normal microscope into a super-resolution instrument using a scanning microlens array
    Huszka, Gergely
    Gijs, Martin A. M.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [6] Leger J. R., 1988, Proceedings of the SPIE - The International Society for Optical Engineering, V884, P82, DOI 10.1117/12.944163
  • [7] A novel and rapid fabrication method for a high fill factor hexagonal microlens array using thermal reflow and repeating spin coating
    Lin, Tsung-Hung
    Lin, Meng-Chen
    Chao, Ching-Kong
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 92 (9-12) : 3329 - 3336
  • [8] Optical Nanofabrication of Concave Microlens Arrays
    Liu, Xue-Qing
    Yu, Lei
    Yang, Shuang-Ning
    Chen, Qi-Dai
    Wang, Lei
    Juodkazis, Saulius
    Sun, Hong-Bo
    [J]. LASER & PHOTONICS REVIEWS, 2019, 13 (05)
  • [9] ThinVR: Heterogeneous microlens arrays for compact, 180 degree FOV VR near-eye displays
    Ratcliff, Joshua
    Supikov, Alexey
    Alfaro, Santiago
    Azuma, Ronald
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (05) : 1981 - 1990
  • [10] SCHOLL MS, 1981, P SOC PHOTO-OPT INST, V288, P93, DOI 10.1117/12.932028