Thermal degradation and combustion behavior of novel intumescent flame retardant polypropylene with N-alkoxy hindered amine

被引:37
作者
Lai, Xuejun [1 ]
Qiu, Jiedong [1 ]
Li, Hongqiang [1 ]
Zhou, Rimin [1 ]
Xie, Huali [1 ]
Zeng, Xingrong [1 ]
机构
[1] South China Univ Technol, Coll Mat Sci & Engn, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Polypropylene; N-alkoxy hindered amine; Intumescent flame retardant; Thermal degradation; Synergistic effect; FIRE-RETARDANT; AMMONIUM POLYPHOSPHATE; PP/IFR COMPOSITE; CHARRING AGENT; SYSTEM; MECHANISMS; STABILITY; PHOSPHATE; POLYMERS; OXIDE;
D O I
10.1016/j.jaap.2016.06.004
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
How to effectively improve the flame retardancy of polypropylene (PP) is one of the key problems needed to be resolved to promote its development and application. In this work, an efficient synergist N-alkoxy hindered amine (NOR116) was combined with a novel intumescent flame retardant (IFR, i.e., ammonium polyphosphate/silicone-containing macromolecular charring agent) to flame-retard PP. The effects of NOR116 on the thermal degradation and combustion behavior of the PP/IFR composites were investigated. It was found that a small amount of NOR116 could effectively improve the flame retardancy and thermal stability of the composites. When the content of NOR116 was 0.3 wt%, the limiting oxygen index (LOI) value of the composite was increased from 35.0% to 42.5%, and the vertical burning (UL-94) test reached a V-0 rating. Meanwhile, the heat release rate (HRR), total heat release (THR), average mass loss rate (av-MLR) and smoke production rate (SPR) of the composite were also significantly reduced. Thermogravimetric analysis (TGA), Thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS) and Laser Raman Spectroscopy (LRS) results revealed that NOR116 could change the thermal degradation of the PP/IFR composites, and promote the charring performance of IFR at lower temperature and enhance the quantity and quality of the intumescent char at high temperature. The possible synergistic mechanism between NOR116 and IFR in PP was also discussed. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 370
页数:10
相关论文
共 32 条
[1]   Intumescent PP blends [J].
Almeras, X ;
Le Bras, A ;
Bourbigot, S ;
Hornsby, P ;
Marosi, G ;
Anna, P ;
Poutch, F .
POLYMERS & POLYMER COMPOSITES, 2003, 11 (08) :691-702
[2]   Versatile bis(1-alkoxy-2,2,6,6-tetramethylpiperidin-4-yl)-diazenes (AZONORs) and related structures and their utilization as flame retardants in polypropylene, low density polyethylene and high-impact polystyrene [J].
Aubert, Melanie ;
Tirri, Teija ;
Wilen, Carl-Eric ;
Francois-Heude, Alexandre ;
Pfaendner, Rudolf ;
Hoppe, Holger ;
Roth, Michael .
POLYMER DEGRADATION AND STABILITY, 2012, 97 (08) :1438-1446
[3]   Recent advances for intumescent polymers [J].
Bourbigot, S ;
Le Bras, M ;
Duquesne, S ;
Rochery, M .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2004, 289 (06) :499-511
[4]   CARBONIZATION MECHANISMS RESULTING FROM INTUMESCENCE ASSOCIATION WITH THE AMMONIUM POLYPHOSPHATE-PENTAERYTHRITOL FIRE-RETARDANT SYSTEM [J].
BOURBIGOT, S ;
LEBRAS, M ;
DELOBEL, R .
CARBON, 1993, 31 (08) :1219-1230
[5]   INFLUENCE OF FIRE RETARDANT, AMMONIUM POLYPHOSPHATE, ON THERMAL-DEGRADATION OF POLY(METHYL METHACRYLATE) [J].
CAMINO, G ;
GRASSIE, N ;
MCNEILL, IC .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1978, 16 (01) :95-106
[6]   OVERVIEW OF FIRE RETARDANT MECHANISMS [J].
CAMINO, G ;
COSTA, L ;
DICORTEMIGLIA, MPL .
POLYMER DEGRADATION AND STABILITY, 1991, 33 (02) :131-154
[7]   Synthesis of N-Alkoxy Hindered Amine Containing Si lane as a Multifunctional Flame Retardant Synergist and Its Application in Intumescent Flame Retardant Polypropylene [J].
Cao, Kun ;
Wu, Shui-liang ;
Qiu, Shao-long ;
Li, Yan ;
Yao, Zhen .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (01) :309-317
[8]   Preparation of Intumescent Flame Retardant Poly(butylene succinate) Using Fumed Silica as Synergistic Agent [J].
Chen, Yangjuan ;
Zhan, Jing ;
Zhang, Ping ;
Nie, Shibin ;
Lu, Hongdian ;
Song, Lei ;
Hu, Yuan .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (17) :8200-8208
[9]   Synergistic effect of natural zeolites on flame retardant additives [J].
Demir, H ;
Arkis, E ;
Balköse, D ;
Ülkü, S .
POLYMER DEGRADATION AND STABILITY, 2005, 89 (03) :478-483
[10]   Influence of zinc borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites [J].
Feng, Caimin ;
Zhang, Yi ;
Liang, Dong ;
Liu, Siwei ;
Chi, Zhenguo ;
Xu, Jiarui .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2015, 115 :224-232