Design of an Efficient Inhibitor for the Influenza A Virus M2 Ion Channel

被引:5
作者
Vorobjev, Yu. N. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Chem Biol & Fundamental Med, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
influenza A virus; M2; protein; ion channel; inhibitors; molecular dynamics; ionization of histidine residues; diazabicyclooctane derivatives; CONFORMATIONAL FREE-ENERGY; MOLECULAR-DYNAMICS; PROTON TRANSPORT; STRUCTURAL BASIS; PROTEINS; SIMULATION; CONDUCTION; MECHANISM; CONSTANT; COMPUTE;
D O I
10.1134/S0026893320020168
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Influenza A virus is capable of rapidly infecting large human populations, warranting the development of novel drugs to efficiently inhibit virus replication. A transmembrane ion channel formed by the M2 protein plays an important role in influenza virus replication. A reasonable approach to designing an effective antivirus drug is constructing a molecule that binds in the M2 transmembrane proton channel, blocks H+ proton diffusion through the channel, and thus the influenza A virus cycle. The known anti-influenza drugs amantadine and rimantadine have a weak effect on influenza A virus replication. A new class of positively charged molecules, diazabicyclooctane derivatives with a constant charge of +2, was proposed to block proton diffusion through the M2 ion channel. Molecular dynamics simulations were performed to study the temperature fluctuations in the M2 structure, and ionization states of histidine residues were established at physiological pH values. Two types of diazabicyclooctane derivatives were analyzed for binding with the M2 ion channel. An optimal structure was determined for a blocker to most efficiently bind with the M2 ion channel and block proton diffusion. The new molecule is advantageous over amantadine and rimantadine in having a positive charge of +2, which creates a positive electrostatic potential barrier to proton transport through the M2 ion channel in addition to a steric barrier.
引用
收藏
页码:281 / 291
页数:11
相关论文
共 52 条
[1]   Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus [J].
Acharya, Rudresh ;
Carnevale, Vincenzo ;
Fiorin, Giacomo ;
Levine, Benjamin G. ;
Polishchuk, Alexei L. ;
Balannik, Victoria ;
Samish, Ilan ;
Lamb, Robert A. ;
Pinto, Lawrence H. ;
DeGrado, William F. ;
Klein, Michael L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (34) :15075-15080
[2]  
[Anonymous], 2003, INFLUENZA
[3]  
Bita B., 2010, EUROPEAN J CHEM, V1, P54, DOI DOI 10.5155/EURJCHEM.1.1.54-60.2
[4]   Amantadine-induced conformational and dynamical changes of the influenza M2 transmembrane proton channel [J].
Cady, Sarah D. ;
Hong, Mei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (05) :1483-1488
[5]   Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers [J].
Cady, Sarah D. ;
Schmidt-Rohr, Klaus ;
Wang, Jun ;
Soto, Cinque S. ;
DeGrado, William F. ;
Hong, Mei .
NATURE, 2010, 463 (7281) :689-U127
[6]   Structure of Amantadine-Bound M2 Transmembrane Peptide of Influenza A in Lipid Bilayers from Magic-Angle-Spinning Solid-State NMR: The Role of Ser31 in Amantadine Binding [J].
Cady, Sarah D. ;
Mishanina, Tatiana V. ;
Hong, Me .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 385 (04) :1127-1141
[7]   1,4-diazabicyclo[2.2.2]octane (DABCO) as an efficient reagent for the synthesis of isoxazole derivatives from primary nitro compounds and dipolarophiles: The role of the base [J].
Cecchi, Luca ;
De Sarlo, Francesco ;
Machetti, Fabrizio .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2006, 2006 (21) :4852-4860
[8]   Proton transport Behavior through the influenza a M2 channel: Insights from molecular simulation [J].
Chen, Hanning ;
Wu, Yujie ;
Voth, Gregory A. .
BIOPHYSICAL JOURNAL, 2007, 93 (10) :3470-3479
[9]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[10]   In Depth Analysis on the Binding Sites of Adamantane Derivatives in HCV ( Hepatitis C Virus) p7 Channel Based on the NMR Structure [J].
Du, Qi-Shi ;
Wang, Shu-Qing ;
Chen, Dong ;
Meng, Jian-Zong ;
Huang, Ri-Bo .
PLOS ONE, 2014, 9 (04)