Construction of one special minimum storage regenerating code when α=2

被引:3
作者
Liang SongTao [1 ]
Liang WenJuan [2 ]
Kan HaiBin [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[2] Henan Univ, Coll Comp & Informat Engn, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
array codes; distributed storage; network coding; maximum-distance-separable(MDS) codes; minimum storage regenerating(MSR) codes; DISTRIBUTED STORAGE; REPAIR;
D O I
10.1007/s11432-014-5274-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regenerating codes is one class of erasure codes for distributed storage. A [n, k, d, alpha, beta] regenerating code can recover the original message from any k out of n distributed storage nodes and repair any failed node from other arbitrary d nodes, alpha is the number of symbols stored in one node and beta is the number of symbols downloaded by a newcomer node. Minimum storage regenerating (MSR) code is a regenerating code attaining the minimal storage requirement. In this paper, we address the design of a special MSR code where alpha = 2 and the first fragment of a node stores original symbol (we call it hybrid systematic MSR code or HS-MSR code). We point out that there exists no exact-repair construction when k >= 5. A simple exact linear construction is given when k = 2. Furthermore, by relaxing the condition of connecting any d nodes, we investigate the properties of quasi-cyclic regenerating code and propose a unified construction such that when k 3, repairing process can be achieved with less repair bandwidth by repair-by-transfer form.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 21 条
  • [1] Network Coding for Distributed Storage Systems
    Dimakis, Alexandros G.
    Godfrey, P. Brighten
    Wu, Yunnan
    Wainwright, Martin J.
    Ramchandran, Kannan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4539 - 4551
  • [2] El Rouayheb S., 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), P1510, DOI 10.1109/ALLERTON.2010.5707092
  • [3] GASTON B, 2011, P DAT COMPR C DCC SN, P33
  • [4] Hu YC, 2013, IEEE INFOCOM SER, P2355
  • [5] Explicit-form complex orthogonal design for space-time block codes
    Li Yuan
    Yuan Chen
    Kan HaiBin
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (06) : 1 - 10
  • [6] A new scheme of digital communication using chaotic signals in MIMO channels
    Ma HuanFei
    Kan HaiBin
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (10) : 2183 - 2193
  • [7] Motwani R., 1995, RANDOMIZED ALGORITHM
  • [8] Oggier F, 2011, IEEE INFOCOM SER, P1215, DOI 10.1109/INFCOM.2011.5934901
  • [9] Papailiopoulos Dimitris S., 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), P1382
  • [10] Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction
    Rashmi, K. V.
    Shah, Nihar B.
    Kumar, P. Vijay
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5227 - 5239