COVID-FACT: A Fully-Automated Capsule Network-Based Framework for Identification of COVID-19 Cases from Chest CT Scans

被引:30
|
作者
Heidarian, Shahin [1 ]
Afshar, Parnian [2 ]
Enshaei, Nastaran [2 ]
Naderkhani, Farnoosh [2 ]
Rafiee, Moezedin Javad [3 ]
Fard, Faranak Babaki [4 ]
Samimi, Kaveh [5 ]
Atashzar, S. Farokh [6 ,7 ]
Oikonomou, Anastasia [8 ]
Plataniotis, Konstantinos N. [9 ]
Mohammadi, Arash [2 ]
机构
[1] Concordia Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
[2] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ, Canada
[3] McGill Univ, Dept Med & Diagnost Radiol, Hlth Ctr, Res Inst, Montreal, PQ, Canada
[4] Univ Montreal, Fac Med, Biomed Sci Dept, Montreal, PQ, Canada
[5] Iran Univ Med Sci, Dept Radiol, Tehran, Iran
[6] NYU, Dept Elect & Comp Engn, New York, NY USA
[7] NYU, Dept Mech & Aerosp Engn, New York, NY USA
[8] Univ Toronto, Sunnybrook Hlth Sci Ctr, Dept Med Imaging, Toronto, ON, Canada
[9] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2021年 / 4卷
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
capsule networks; COVID-19; computed tomography scans; fully automated classification; deep learning; CLASSIFICATION; PNEUMONIA;
D O I
10.3389/frai.2021.598932
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The newly discovered Coronavirus Disease 2019 (COVID-19) has been globally spreading and causing hundreds of thousands of deaths around the world as of its first emergence in late 2019. The rapid outbreak of this disease has overwhelmed health care infrastructures and arises the need to allocate medical equipment and resources more efficiently. The early diagnosis of this disease will lead to the rapid separation of COVID-19 and non-COVID cases, which will be helpful for health care authorities to optimize resource allocation plans and early prevention of the disease. In this regard, a growing number of studies are investigating the capability of deep learning for early diagnosis of COVID-19. Computed tomography (CT) scans have shown distinctive features and higher sensitivity compared to other diagnostic tests, in particular the current gold standard, i.e., the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. Current deep learning-based algorithms are mainly developed based on Convolutional Neural Networks (CNNs) to identify COVID-19 pneumonia cases. CNNs, however, require extensive data augmentation and large datasets to identify detailed spatial relations between image instances. Furthermore, existing algorithms utilizing CT scans, either extend slice-level predictions to patient-level ones using a simple thresholding mechanism or rely on a sophisticated infection segmentation to identify the disease. In this paper, we propose a two-stage fully automated CT-based framework for identification of COVID-19 positive cases referred to as the "COVID-FACT". COVID-FACT utilizes Capsule Networks, as its main building blocks and is, therefore, capable of capturing spatial information. In particular, to make the proposed COVID-FACT independent from sophisticated segmentations of the area of infection, slices demonstrating infection are detected at the first stage and the second stage is responsible for classifying patients into COVID and non-COVID cases. COVID-FACT detects slices with infection, and identifies positive COVID-19 cases using an in-house CT scan dataset, containing COVID-19, community acquired pneumonia, and normal cases. Based on our experiments, COVID-FACT achieves an accuracy of 90.82%, a sensitivity of 94.55%, a specificity of 86.04%, and an Area Under the Curve (AUC) of 0.98, while depending on far less supervision and annotation, in comparison to its counterparts.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] CT-CAPS: FEATURE EXTRACTION-BASED AUTOMATED FRAMEWORK FOR COVID-19 DISEASE IDENTIFICATION FROM CHEST CT SCANS USING CAPSULE NETWORKS
    Heidarian, Shahin
    Afshar, Parisian
    Mohammadi, Arash
    Rafiee, Moezedin Javad
    Oikonomou, Anastasia
    Plataniotis, Konstantinos N.
    Naderkhani, Farnoosh
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1040 - 1044
  • [2] ACSN: Attention capsule sampling network for diagnosing COVID-19 based on chest CT scans
    Wen, Cuihong
    Liu, Shaowu
    Liu, Shuai
    Heidari, Ali Asghar
    Hijji, Mohammad
    Zarco, Carmen
    Muhammad, Khan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [3] COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images
    Afshar, Parnian
    Heidarian, Shahin
    Naderkhani, Farnoosh
    Oikonomou, Anastasia
    Plataniotis, Konstantinos N.
    Mohammadi, Arash
    PATTERN RECOGNITION LETTERS, 2020, 138 : 638 - 643
  • [4] Weakly-Supervised Network for Detection of COVID-19 in Chest CT Scans
    Mohammed, Ahmed
    Wang, Congcong
    Zhao, Meng
    Ullah, Mohib
    Naseem, Rabia
    Wang, Hao
    Pedersen, Marius
    Cheikh, Faouzi Alaya
    IEEE ACCESS, 2020, 8 : 155987 - 156000
  • [5] A lightweight capsule network architecture for detection of COVID-19 from lung CT scans
    Tiwari, Shamik
    Jain, Anurag
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (02) : 419 - 434
  • [6] COVID19-ResCapsNet: A Novel Residual Capsule Network for COVID-19 Detection From Chest X-Ray Scans Images
    Li, Zhihua
    Xing, Qiwei
    Zhao, Jiashi
    Miao, Yu
    Zhang, Ke
    Feng, Guanyuan
    Qu, Feng
    Li, Yanfang
    He, Wei
    Shi, Weili
    Jiang, Zhengang
    IEEE ACCESS, 2023, 11 : 52923 - 52937
  • [7] A light CNN for detecting COVID-19 from CT scans of the chest
    Polsinelli, Matteo
    Cinque, Luigi
    Placidi, Giuseppe
    PATTERN RECOGNITION LETTERS, 2020, 140 : 95 - 100
  • [8] Automated Detection of COVID-19 from CT Scans using Convolutional Neural Networks
    Lokwani, Rohit
    Gaikwad, Ashrika
    Kulkarni, Viraj
    Pant, Anirudha
    Kharat, Amit
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM), 2021, : 565 - 570
  • [9] AI detection of mild COVID-19 pneumonia from chest CT scans
    Yao, Jin-Cao
    Wang, Tao
    Hou, Guang-Hua
    Ou, Di
    Li, Wei
    Zhu, Qiao-Dan
    Chen, Wen-Cong
    Yang, Chen
    Wang, Li-Jing
    Wang, Li-Ping
    Fan, Lin-Yin
    Shi, Kai-Yuan
    Zhang, Jie
    Xu, Dong
    Li, Ya-Qing
    EUROPEAN RADIOLOGY, 2021, 31 (09) : 7192 - 7201
  • [10] AI detection of mild COVID-19 pneumonia from chest CT scans
    Jin-Cao Yao
    Tao Wang
    Guang-Hua Hou
    Di Ou
    Wei Li
    Qiao-Dan Zhu
    Wen-Cong Chen
    Chen Yang
    Li-Jing Wang
    Li-Ping Wang
    Lin-Yin Fan
    Kai-Yuan Shi
    Jie Zhang
    Dong Xu
    Ya-Qing Li
    European Radiology, 2021, 31 : 7192 - 7201