Effect of particle surface selectivity on composite nanostructures in nanoparticle/diblock copolymer mixture dilute solution

被引:13
作者
Ma, Zengwei [1 ]
Li, Robert K. Y. [1 ]
机构
[1] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
关键词
Diblock copolymer; Particle surface selectivity; Dilute solution; HPF method; Micelle; Composite nanostructures; Thermodynamic properties; CONSISTENT-FIELD THEORY; AMPHIPHILIC DIBLOCK COPOLYMER; ACID) BLOCK-COPOLYMERS; ABC TRIBLOCK COPOLYMER; AGGREGATE MORPHOLOGIES; SIZE CONTROL; THIN-FILMS; BEHAVIOR; COMPLEX; SIMULATION;
D O I
10.1016/j.jcis.2011.07.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study the phase behavior of nanoparticle/diblock copolymer composites in dilute solution has been investigated by the hybrid particle-field (HPF) method. We focus on the influence of particle surface selectivity (i.e. hydrophobic and hydrophilic) on the distribution of nanoparticles in the micelles formed by the diolock copolymers. These two types of particle surface selectivity are simulated systematically. The different competition between the energy from enthalpy and the energy from entropy has been observed in the two kinds of composite systems. Our simulation results show that the particle surface selectivity is a crucial factor for determining the thermodynamic properties in the complex dilute solution, and the morphologies of micelles are controlled by the volume fraction of the nanoparticles. The change of particle distribution in various micelles enriches the composite microstructures that can be formed by nanoparticle and diblock copolymer. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 47 条
[1]   Synthesis of stable "gold nanoparticle-polymeric micelle" conjugates: A new class of star "molecular chimera" that self-assemble into linear arrays of spherical micelles [J].
Abraham, Sinoj ;
Ha, Chang-Sik ;
Batt, Carl A. ;
Kim, Il .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (16) :3570-3579
[2]   Block copolymer nanocomposites: Perspectives for tailored functional materials [J].
Bockstaller, MR ;
Mickiewicz, RA ;
Thomas, EL .
ADVANCED MATERIALS, 2005, 17 (11) :1331-1349
[3]   Microdomain ordering in laterally confined block copolymer thin films [J].
Bosse, August W. ;
Garcia-Cervera, Carlos J. ;
Fredrickson, Glenn H. .
MACROMOLECULES, 2007, 40 (26) :9570-9581
[4]   Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries [J].
Buescher, Joerg M. ;
Margaritis, Argyrios .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2007, 27 (01) :1-19
[5]   Drug diffusion from polymer core-shell nanoparticles [J].
Buxton, Gavin A. ;
Clarke, Nigel .
SOFT MATTER, 2007, 3 (12) :1513-1517
[6]   Control of nanoparticle location in block copolymers [J].
Chiu, JJ ;
Kim, BJ ;
Kramer, EJ ;
Pine, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (14) :5036-5037
[7]   Theoretically informed coarse grain simulations of block copolymer melts: method and applications [J].
Detcheverry, Francois A. ;
Pike, Darin Q. ;
Nagpal, Umang ;
Nealey, Paul F. ;
de Pablo, Juan J. .
SOFT MATTER, 2009, 5 (24) :4858-4865
[8]   Synthesis and isolation of the molecule-like cluster Au38(PhCH2CH2S)24 [J].
Donkers, RL ;
Lee, D ;
Murray, RW .
LANGMUIR, 2004, 20 (05) :1945-1952
[9]   Combinatorial screening of complex block copolymer assembly with self-consistent field theory [J].
Drolet, F ;
Fredrickson, GH .
PHYSICAL REVIEW LETTERS, 1999, 83 (21) :4317-4320
[10]   Optimizing chain bridging in complex block copolymers [J].
Drolet, F ;
Fredrickson, GH .
MACROMOLECULES, 2001, 34 (15) :5317-5324