Value range optimization of ply parameter for composite wind turbine blades based on sensitivity analysis

被引:3
|
作者
Sun, Pengwen [1 ]
Zhang, Yin [1 ]
Zhang, Lanting [1 ]
Hu, Weifei [2 ]
机构
[1] Inner Mongolia Univ Technol, Sch Mech Engn, Hohhot 010051, Peoples R China
[2] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Ply parameter; Sensitivity analysis; Stability region division; Value range optimization; Blade performance; DESIGN; MODELS;
D O I
10.1007/s12206-022-0224-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Blade ply parameters are important design factors that influence the performances of wind turbine blades. This paper proposes a sensitivity analysis method of the blade ply parameters that fuses the relative sensitivity analysis of multi-parameters and the interval sensitivity analysis of single-parameters. A method for identifying the stability region of the sensitive parameters is presented. Coupled mathematical models of the blade static strength and the blade stiffness as a function of the blade ply parameters are established by incorporating experimental design, finite element analysis, and multiple nonlinear regression. The moment independent sensitivity analysis method based on the cumulative distribution function is used to analyze the multi-parameter relative sensitivity, and the direct derivative method was used to analyze single-parameter interval sensitivity. The sensitive and insensitive ply parameters are identified, and the initial stability and instability regions of the ply parameters are determined. A case study of a 1.5 MW blade shows that the ply angle and the ply thickness are sensitive parameters, and the ply stacking sequence is an insensitive parameter. The optimal and stability value ranges of the ply angle and the +/- x degrees ply thickness ratio are [44 degrees, 45 degrees] and [44 %, 48 %], respectively. Hence, the validity and reliability of the proposed method is verified.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 50 条
  • [1] Value range optimization of ply parameter for composite wind turbine blades based on sensitivity analysis
    Pengwen Sun
    Yin Zhang
    Lanting Zhang
    Weifei Hu
    Journal of Mechanical Science and Technology, 2022, 36 : 1351 - 1361
  • [2] Uncertainty quantification and global sensitivity analysis of composite wind turbine blades
    Thapa, Mishal
    Missoum, Samy
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 222
  • [3] Structure ply optimization of composite wind turbine blade
    Sun P.
    Ma K.
    Yue C.
    Li J.
    Sun, Pengwen, 1600, UK Simulation Society, Clifton Lane, Nottingham, NG11 8NS, United Kingdom (17): : 4.1 - 4.5
  • [4] Single parameter sensitivity analysis of ply parameters on structural performance of wind turbine blade
    Rong, Qiang (1360863098@qq.com), 1600, Tech Science Press (117):
  • [5] Design and Optimization of Composite Offshore Wind Turbine Blades
    Tarfaoui, M.
    Shah, O. R.
    Nachtane, M.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (05):
  • [6] OPTIMIZATION OF LAMINATING PARAMETERS FOR COMPOSITE WIND TURBINE BLADES
    Zhang Z.
    Qiao Y.
    Wang S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (03): : 97 - 103
  • [7] FLUTTER ANALYSIS AND PARAMETER SENSITIVITY STUDY OF ULTRA-LARGE WIND TURBINE BLADES
    Li B.
    Tian D.
    Tang S.
    Tao L.
    Wu X.
    Liu F.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (09): : 295 - 301
  • [8] OPTIMIZATION DESIGN OF COMPOSITE WIND TURBINE BLADES INTEGRATING LIGHTNING STRIKE ANALYSIS
    Hu, Weifei
    Wang, Yeqing
    PROCEEDINGS OF THE ASME 11TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2017, 2017,
  • [9] Modules and analysis of technological parameter optimization for surface pretreatment with sandblasting on wind turbine blades
    Xiangyong Y.
    Xiuting W.
    Xuemei H.
    Lei'an Z.
    Journal of Engineering Science and Technology Review, 2020, 13 (03) : 206 - 214
  • [10] Ply parameter optimization of wind turbine blade based on radial basis function netural network
    Zhao, Qingxin
    Zhang, Lanting
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (04): : 229 - 234