Computer-Generated Text Detection Using Machine Learning: A Systematic Review

被引:17
作者
Beresneva, Daria [1 ]
机构
[1] Russian Acad Natl Econ & Publ Adm, Moscow Inst Phys & Technol, Antiplagiat Res, Moscow, Russia
来源
NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, NLDB 2016 | 2016年 / 9612卷
关键词
Artificial content; Generated text; Fake content detection;
D O I
10.1007/978-3-319-41754-7_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer-generated text or artificial text nowadays is in abundance on the web, ranging from basic random word salads to web scraping. In this paper, we present a short version of systematic review of some existing automated methods aimed at distinguishing natural texts from artificially generated ones. The methods were chosen by certain criteria. We further provide a summary of the methods considered. Comparisons, whenever possible, use common evaluation measures, and control for differences in experimental set-up.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 2013, Long Papers
[2]  
[Anonymous], 1997, 5th European Conference on Speech Communication and Technology
[3]  
Baayen R. H., 2001, WORD FREQUENCY DISTR, V18
[4]  
Chen S.F., 1996, P ACL, DOI DOI 10.3115/981863.981904
[5]  
Chickering D. M., 1997, P UAI 1997, P80
[6]  
Corston-Oliver S, 2001, 39TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P140
[7]  
Grechnikov E. A., 2009, P 11 ALL RUSS RES C, P306
[8]  
Gyongyi Z., 2005, 1 INT WORKSH ADV INF
[9]   Fighting spam on social web sites - A survey of approaches and future challenges [J].
Heymann, Paul ;
Koutrika, Georgia ;
Garcia-Molina, Hector .
IEEE INTERNET COMPUTING, 2007, 11 (06) :36-45
[10]  
Honore Antony., 1979, ASS LIT LINGUISTIC C, V7, P172