Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane

被引:35
作者
Yao, Bowen [1 ,5 ]
Mandra, Salvatore [2 ,3 ]
Curry, John O. [1 ,6 ]
Shaikhutdinov, Shamil [4 ]
Freund, Hans-Joachim [4 ]
Schrier, Joshua [1 ]
机构
[1] Haverford Coll, Dept Chem, 370 Lancaster Ave, Haverford, PA 19041 USA
[2] NASA, Quantum Artificial Intelligence Lab QuAIL, Ames Res Ctr, Mail Stop 269-1, Moffett Field, CA 94035 USA
[3] Stinger Ghaffarian Technol Inc, 7701 Greenbelt Rd,Suite 400, Greenbelt, MD 20770 USA
[4] Fritz Haber Inst, Dept Chem Phys, Faradayweg 4-6, D-14195 Berlin, Germany
[5] Univ Penn, Dept Chem, 231 South 34th St, Philadelphia, PA 19104 USA
[6] Univ Washington, Sch Law, 4293 Mem Way Northeast, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
bilayer silica; amorphous; vitreous; density functional theory; potential energy surface; resonant tunneling; INITIO MOLECULAR-DYNAMICS; HELIUM SEPARATION; POROUS GRAPHENE; HYDROGEN; PERMEATION; ADSORPTION; CRYSTALLINE; PERFORMANCE; RU(0001); MODELS;
D O I
10.1021/acsami.7b13302
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H-2/CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H-2, N-2, CO, and CO2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for He-3/He-4, He/natural gas, and H-2/CO separations.
引用
收藏
页码:43061 / 43071
页数:11
相关论文
共 79 条
[1]   Gas Separation Membrane Materials: A Perspective [J].
Baker, Richard W. ;
Low, Bee Ting .
MACROMOLECULES, 2014, 47 (20) :6999-7013
[2]   Graphdiyne Pores: "Ad Hoc" Openings for Helium Separation Applications [J].
Bartolomei, Massimiliano ;
Carmona-Novillo, Estela ;
Hernandez, Marta I. ;
Campos-Martinez, Jose ;
Pirani, Fernando ;
Giorgi, Giacomo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (51) :29966-29972
[3]   Membrane Gas Separation: A Review/State of the Art [J].
Bernardo, P. ;
Drioli, E. ;
Golemme, G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (10) :4638-4663
[4]   Impermeability of graphene and its applications [J].
Berry, Vikas .
CARBON, 2013, 62 :1-10
[5]   Porous Graphene as an Atmospheric Nanofilter [J].
Blankenburg, Stephan ;
Bieri, Marco ;
Fasel, Roman ;
Muellen, Klaus ;
Pignedoli, Carlo A. ;
Passerone, Daniele .
SMALL, 2010, 6 (20) :2266-2271
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[8]   Implications of Permeation through Intrinsic Defects in Graphene on the Design of Defect-Tolerant Membranes for Gas Separation [J].
Boutilier, Michael S. H. ;
Sun, Chengzhen ;
O'Hern, Sean C. ;
Au, Harold ;
Hadjiconstantinou, Nicolas G. ;
Karnik, Rohit .
ACS NANO, 2014, 8 (01) :841-849
[9]   Noble Gas Separation using PG-ESX (X=1, 2, 3) Nanoporous Two-Dimensional Polymers [J].
Brockway, Anna M. ;
Schrier, Joshua .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (01) :393-402
[10]  
Buchner C., 2016, THESIS