Stein Variational Gradient Descent with Matrix-Valued Kernels

被引:0
|
作者
Wang, Dilin [1 ]
Tang, Ziyang [1 ]
Bajaj, Chandrajit [1 ]
Liu, Qiang [1 ]
机构
[1] UT Austin, Dept Comp Sci, Austin, TX 78712 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019) | 2019年 / 32卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stein variational gradient descent (SVGD) is a particle-based inference algorithm that leverages gradient information for efficient approximate inference. In this work, we enhance SVGD by leveraging preconditioning matrices, such as the Hessian and Fisher information matrix, to incorporate geometric information into SVGD updates. We achieve this by presenting a generalization of SVGD that replaces the scalar-valued kernels in vanilla SVGD with more general matrix-valued kernels. This yields a significant extension of SVGD, and more importantly, allows us to flexibly incorporate various preconditioning matrices to accelerate the exploration in the probability landscape. Empirical results show that our method outperforms vanilla SVGD and a variety of baseline approaches over a range of real-world Bayesian inference tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Stein Variational Gradient Descent with Multiple Kernels
    Qingzhong Ai
    Shiyu Liu
    Lirong He
    Zenglin Xu
    Cognitive Computation, 2023, 15 : 672 - 682
  • [2] Stein Variational Gradient Descent with Multiple Kernels
    Ai, Qingzhong
    Liu, Shiyu
    He, Lirong
    Xu, Zenglin
    COGNITIVE COMPUTATION, 2023, 15 (02) : 672 - 682
  • [3] Stein Variational Gradient Descent as Gradient Flow
    Liu, Qiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [4] Stein Variational Gradient Descent Without Gradient
    Han, Jun
    Liu, Qiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [5] On the geometry of Stein variational gradient descent
    Duncan, A.
    Nusken, N.
    Szpruch, L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [6] Projected Stein Variational Gradient Descent
    Chen, Peng
    Ghattas, Omar
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [7] Grassmann Stein Variational Gradient Descent
    Liu, Xing
    Zhu, Harrison
    Ton, Jean-Francois
    Wynne, George
    Duncan, Andrew
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [8] Stein Variational Gradient Descent with Variance Reduction
    Nhan Dam
    Trung Le
    Viet Huynh
    Dinh Phung
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Interpolation with uncoupled separable matrix-valued kernels
    Wittwar, Dominik
    Santin, Gabriele
    Haasdonk, Bernard
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2018, 11 : 23 - 39
  • [10] Stein Variational Gradient Descent as Moment Matching
    Liu, Qiang
    Wang, Dilin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31