Energy-Efficient Resource Allocation for Massive MIMO Amplify-and-Forward Relay Systems

被引:28
作者
Gao, Hui [1 ]
Lv, Tiejun [1 ]
Su, Xin [2 ]
Yang, Hong [3 ]
Cioffi, John M. [4 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Nokia Bell Labs, Math Networks & Commun Res Dept, Murray Hill, NJ 07974 USA
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
来源
IEEE ACCESS | 2016年 / 4卷
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Energy-efficient; low-complexity; massive MIMO relay; resource allocation; CELLULAR NETWORKS; OPTIMIZATION; PERFORMANCE; WIRELESS;
D O I
10.1109/ACCESS.2016.2570805
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Energy-efficient resource allocation is investigated for multi-pair massive MIMO amplify-and-forward relay systems, where a dedicated relay assists pairwise information exchange among many pieces of single-antenna user equipment (UE). The system energy efficiency (EE) is theoretically analyzed by employing large system analysis and random matrix theory. This analytical result provides excellent approximation for the system with a moderate number of antennas, and it also enables several efficient algorithms, working with a different knowledge of channel state information (CSI), to maximize the system EE by scheduling the optimal numbers of relay antennas and UE pairs as well as the corresponding relay transmission power. In contrast to the conventional resource allocation schemes, the proposed algorithms avoid complicated matrix calculations and the instantaneous CSI of small-scale fading; therefore, they are computationally efficient with low CSI overhead. The proposed optimization framework sheds light on the optimized system configurations, and it also offers an efficient way to achieve EE-oriented resource allocation for the multi-pair massive MIMO relay systems.
引用
收藏
页码:2771 / 2787
页数:17
相关论文
共 41 条
[21]   Multiple-antenna channel hardening and its implications for rate feedback and scheduling [J].
Hochwald, BM ;
Marzetta, TL ;
Tarokh, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (09) :1893-1909
[22]  
I CL, 2014, IEEE COMMUN MAG, V52, P66, DOI 10.1109/MCOM.2014.6736745
[23]   Flexible Resource Allocation for Joint Optimization of Energy and Spectral Efficiency in OFDMA Multi-Cell Networks [J].
Jing, Wenpeng ;
Lu, Zhaoming ;
Wen, Xiangming ;
Hu, Zhiqun ;
Yang, Shaoshi .
IEEE COMMUNICATIONS LETTERS, 2015, 19 (03) :451-454
[24]   Energy-Efficient, Large-Scale Distributed-Antenna System (L-DAS) for Multiple Users [J].
Joung, Jingon ;
Chia, Yeow Khiang ;
Sun, Sumei .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :954-965
[25]   EMA: Energy-Efficiency-Aware Multiple Access [J].
Joung, Jingon ;
Sun, Sumei .
IEEE COMMUNICATIONS LETTERS, 2014, 18 (06) :1071-1074
[26]   Max-Min Relay Selection for Legacy Amplify-and-Forward Systems with Interference [J].
Krikidis, Ioannis ;
Thompson, John S. ;
McLaughlin, Steve ;
Goertz, Norbert .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2009, 8 (06) :3016-3027
[27]  
Liu A, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (IEEE ICCS 2012), P230, DOI 10.1109/ICCS.2012.6406144
[28]   Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas [J].
Marzetta, Thomas L. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2010, 9 (11) :3590-3600
[29]   A random matrix model of communication via antenna Arrays [J].
Müller, RR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) :2495-2506
[30]   Scenarios for 5G Mobile and Wireless Communications: The Vision of the METIS Project [J].
Osseiran, Afif ;
Boccardi, Federico ;
Braun, Volker ;
Kusume, Katsutoshi ;
Marsch, Patrick ;
Maternia, Michal ;
Queseth, Olav ;
Schellmann, Malte ;
Schotten, Hans ;
Taoka, Hidekazu ;
Tullberg, Hugo ;
Uusitalo, Mikko A. ;
Timus, Bogdan ;
Fallgren, Mikael .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (05) :26-35