共 50 条
Engineering Interfacial Band Bending over ZnIn2S4/SnS2 by Interface Chemical Bond for Efficient Solar-Driven Photoelectrochemical Water Splitting
被引:62
|作者:
Li, Shengnan
[1
]
Meng, Linxing
[1
]
Tian, Wei
[1
]
Li, Liang
[1
]
机构:
[1] Soochow Univ, Ctr Energy Convers Mat & Phys CECMP, Jiangsu Key Lab Thin Films, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
基金:
中国国家自然科学基金;
关键词:
band regulation;
interface chemical bonds;
water splitting;
ZnIn;
S-2;
(4);
SnS;
(2);
HETEROJUNCTION;
PHOTOANODE;
D O I:
10.1002/aenm.202200629
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Developing a simple and effective strategy to modulate the energy band bending of heterojunction photoelectrodes is pivotal in terms of photoelectrochemical (PEC) water splitting. Herein, it is demonstrated that the introduction of the interfacial In-O-Sn chemical bonds at the ZnIn2S4/SnS2 interface regulates the band bending of ZnIn2S4/SnS2 heterojunction photoanodes, reverses the charge transport direction, and reduces the oxygen evolution reaction (OER) overpotential. Detailed analysis indicates that the interfacial In-O-Sn bond makes band adaptation to promote carrier separation and transfer through ultraviolet photoelectron spectrometry, hydroxyl radical production tests, and surface photovoltage measurements. Due to the special nanosheet morphology with exposed edges of the heterojunction interface, the In-O-Sn bonds are partially exposed, which can reduce the OER overpotential and boost the surface injection efficiency according to the PEC impedance spectroscopy and density functional theory calculations. The synergistic modulation of In-O-Sn bond yields a photocurrent of 4.57 mA cm(-2) at 1.23 V (vs reversible hydrogen electrode, AM 1.5 G) and a low onset potential of -0.14 V-RHE. This work provides a new solution for energy band regulation to improve the performance of heterojunction photoelectrodes for PEC water splitting.
引用
收藏
页数:10
相关论文