On the effective Nullstellensatz

被引:66
作者
Jelonek, Z [1 ]
机构
[1] Polish Acad Sci, Inst Matemat, PL-31027 Krakow, Poland
关键词
Finite Number; Similar Estimate; Sharp Estimate; Common Zero; Affine Variety;
D O I
10.1007/s00222-004-0434-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an algebraically closed field and let X subset of K-m be an n-dimensional affine variety. Assume that f(1),..., f(k) are polynomials which have no common zeros on X. We estimate the degrees of polynomials A(i) is an element of K[X] such that 1 = Sigma(k)(i=1) A(i) f(i) n X. Our estimate is sharp for k <= n and nearly sharp for k > n. Now assume that f(1),..., f(k) are polynomials on X. Let I = (f(1),..., f(k)). K[X] be the ideal generated by fi. It is well-known that there is a number e(I) (the Noether exponent) such that root I-e(I) subset of I. We give a sharp estimate of e(I) in terms of n, deg X and deg f(i). We also give similar estimates in the projective case. Finally we obtain a result from the elimination theory: if f(1), ..., f(n) is an element of K[x(1),..., x(n)] is a system of polynomials with a finite number of common zeros, then we have the following optimal elimination: phi(i)(x(i)) = Sigma(n)(j=1) f(j)g(ij), i = 1,..., n, where deg f(j)g(ij) <= Pi(n)(i=1) deg f(i).
引用
收藏
页码:1 / 17
页数:17
相关论文
共 11 条
[1]   BOUNDS FOR THE DEGREES IN THE NULLSTELLENSATZ [J].
BROWNAWELL, WD .
ANNALS OF MATHEMATICS, 1987, 126 (03) :577-591
[2]  
Brownawell WD, 1998, MICH MATH J, V45, P581
[3]   A geometric effective Nullstellensatz [J].
Ein, L ;
Lazarsfeld, R .
INVENTIONES MATHEMATICAE, 1999, 137 (02) :427-448
[4]  
HARTSHORNE R, 1997, ALGEBRAIC GEOMETRY
[5]   Testing sets for properness of polynomial mappings [J].
Jelonek, Z .
MATHEMATISCHE ANNALEN, 1999, 315 (01) :1-35
[6]  
Jelonek Z., 2001, B POL ACAD SCI MATH, V49, P375
[7]  
JELONEK Z, IN PRESS LOJASIEWICZ
[8]  
Kollar J., 1999, J EUR MATH SOC, V1, P313
[9]  
Kollar J., 1988, Journal of the American Mathematical Society, P963, DOI DOI 10.2307/1990996
[10]  
Perron O, 1927, ALGEBRA, V1