Robust Tubes in Nonlinear Model Predictive Control

被引:68
作者
Cannon, Mark [1 ]
Buerger, Johannes [1 ]
Kouvaritakis, Basil [1 ]
Rakovic, Sasa [1 ,2 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
[2] Otto VonGuericke Univ Magdegurg, Inst Automat Engn, D-39106 Magdeburg, Germany
关键词
Constrained control; nonlinear systems; optimization; TIME ITERATION SCHEME; SYSTEMS; STABILITY;
D O I
10.1109/TAC.2011.2135190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinear model predictive control (NMPC) strategies based on linearization about predicted system trajectories enable the online NMPC optimization to be performed by a sequence of convex optimization problems. The approach relies on bounds on linearization errors in order to ensure constraint satisfaction and convergence of the performance index, both during the optimization at each sampling instant and along closed loop system trajectories. This technical note proposes bounds based on robust tubes constructed around predicted trajectories. To ensure local optimality, the bounds are non-conservative for the case of zero linearization error, which requires the tube cross sections to vary along predicted trajectories. The feasibility, stability and convergence properties of the algorithm are established without the need for predictions to satisfy local optimality criteria. The strategy is illustrated by numerical examples.
引用
收藏
页码:1942 / 1947
页数:6
相关论文
共 14 条
[1]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[2]  
Cannon M, 2010, P AMER CONTR CONF, P6274
[3]  
Cannon M, 2009, LECT NOTES CONTR INF, V384, P249, DOI 10.1007/978-3-642-01094-1_20
[4]   AN EXTENSION OF NEWTON-TYPE ALGORITHMS FOR NONLINEAR PROCESS-CONTROL [J].
DEOLIVEIRA, NMC ;
BIEGLER, LT .
AUTOMATICA, 1995, 31 (02) :281-286
[5]  
Diehl M, 2005, IEE P-CONTR THEOR AP, V152, P296, DOI 10.1049/ip-cta:20040008
[6]   A real-time iteration scheme for nonlinear optimization in optimal feedback control [J].
Diehl, M ;
Bock, HG ;
Schlöder, JP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (05) :1714-1736
[7]  
Diehl M, 2009, LECT NOTES CONTR INF, V384, P391, DOI 10.1007/978-3-642-01094-1_32
[8]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[9]   Constrained receding horizon predictive control for nonlinear systems [J].
Lee, YI ;
Kouvaritakis, B ;
Cannon, M .
AUTOMATICA, 2002, 38 (12) :2093-2102
[10]   Applications of second-order cone programming [J].
Lobo, MS ;
Vandenberghe, L ;
Boyd, S ;
Lebret, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 284 (1-3) :193-228