Rigorous results for the one-dimensional symmetric Anderson model

被引:6
|
作者
Noce, C
Cuoco, M
机构
[1] I.N.F.M.-Unità di Salerno, Dipartimento di Fisica Teorica e Sue Metodologie per le Scienze Applicate, Università di Salerno
来源
PHYSICAL REVIEW B | 1996年 / 54卷 / 17期
关键词
D O I
10.1103/PhysRevB.54.11951
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is shown that the ground state of the symmetric one-dimensional periodic Anderson model on a bipartite lattice with periodic boundary conditions is a pseudospin singlet and has total momentum equal to zero.
引用
收藏
页码:11951 / 11952
页数:2
相关论文
共 50 条
  • [1] Rigorous results for the one-dimensional symmetric Anderson model
    Noce, C.
    Cuoco, M.
    Physical Review B: Condensed Matter, 54 (17/PT1):
  • [2] The asymmetric one-dimensional constrained Ising model: Rigorous results
    Aldous, D
    Diaconis, P
    JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (5-6) : 945 - 975
  • [3] The Asymmetric One-Dimensional Constrained Ising Model: Rigorous Results
    David Aldous
    Persi Diaconis
    Journal of Statistical Physics, 2002, 107 : 945 - 975
  • [4] Effect of band filling on symmetric and asymmetric one-dimensional periodic Anderson model
    Luo, Y
    Kioussis, N
    PHYSICAL REVIEW B, 2002, 65 (19): : 1 - 6
  • [5] One-dimensional periodic Anderson model
    Gulacsi, M.
    MODERN PHYSICS LETTERS B, 2014, 28 (06):
  • [6] Exact results for the one-dimensional periodic Anderson model at finite U
    Orlik, I
    Gulacsi, Z
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2001, 81 (10): : 1587 - 1596
  • [7] Exact results for the one-dimensional periodic Anderson model at finite U
    Orlik, Ivan
    Gulacsi, Zsolt
    Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81 (10 SPEC.): : 1587 - 1596
  • [8] PHASE RANDOMNESS IN THE ONE-DIMENSIONAL ANDERSON MODEL
    STONE, AD
    ALLAN, DC
    JOANNOPOULOS, JD
    PHYSICAL REVIEW B, 1983, 27 (02): : 836 - 843
  • [9] Localized entanglement in one-dimensional Anderson model
    Li, HB
    Wang, XG
    MODERN PHYSICS LETTERS B, 2005, 19 (11): : 517 - 527
  • [10] EXPONENTIAL LOCALIZATION IN THE ONE-DIMENSIONAL ANDERSON MODEL
    KIMBALL, JC
    PHYSICAL REVIEW B, 1981, 24 (06): : 2964 - 2971