Liouville type Theorems for the 3D stationary Hall-MHD equations

被引:15
作者
Li, Zhouyu [1 ]
Niu, Pengcheng [1 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2020年 / 100卷 / 05期
关键词
Hall-MHD system; liouville type theorem; lorentz space; navier-Stokes system; GLOBAL EXISTENCE; MAGNETIC RECONNECTION; WELL-POSEDNESS; BLOW-UP; REGULARITY;
D O I
10.1002/zamm.201900200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to establish the Liouville type theorems for the stationary Hall-MHD equations on R3. We prove that the velocity and magnetic fields, belonging to some Lorentz spaces, must be zero. In particular, we also show Liouville type results for 3D stationary Navier-Stokes equations. Our results extend and generalize previous result contained in Kozono, et al., (2017) [15].
引用
收藏
页数:9
相关论文
共 20 条
[11]   MAGNETIC RECONNECTION IN SOLAR-FLARES [J].
FORBES, TG .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1991, 62 (1-4) :15-36
[12]  
Galdi GP, 2011, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-09620-9
[13]   GLOBAL EXISTENCE AND OPTIMAL DECAY RATES OF SOLUTIONS FOR COMPRESSIBLE HALL-MHD EQUATIONS [J].
Gao, Jincheng ;
Yao, Zheng-An .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06) :3077-3106
[14]   Bifurcation analysis of magnetic reconnection in Hall-MHD-systems [J].
Homann, H ;
Grauer, R .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 208 (1-2) :59-72
[15]   A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions [J].
Kozono, Hideo ;
Terasawa, Yutaka ;
Wakasugi, Yuta .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (02) :804-818
[16]   ON SOME LIOUVILLE TYPE THEOREMS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Li, Dong ;
Yu, Xinwei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4719-4733
[18]   SOME NEW FUNCTIONAL SPACES [J].
LORENTZ, GG .
ANNALS OF MATHEMATICS, 1950, 51 (01) :37-55
[19]   CONVOLUTION OPERATORS AND (P, Q) SPACES [J].
ONEIL, R .
DUKE MATHEMATICAL JOURNAL, 1963, 30 (01) :129-&
[20]   Liouville-type theorem for the steady compressible Hall-MHD system [J].
Zeng, Yong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) :205-211