DISTRIBUTION DISCREPANCY MAXIMIZATION METRIC LEARNING FOR SHIP CLASSIFICATION IN SYNTHETIC APERTURE RADAR IMAGES

被引:0
作者
Xu, Yongjie [1 ]
Lang, Haitao [1 ]
Chai, Xiaopeng [1 ]
机构
[1] Beijing Univ Chem Technol, Dept Phys & Elect, Beijing 100029, Peoples R China
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Distribution discrepancy; distance metric learning (DML); ship classification; synthetic aperture radar (SAR);
D O I
10.1109/igarss.2019.8899173
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Supervised learning techniques are widely used in the task of ship classification in synthetic aperture radar (SAR) images in recent years. Learning distance metrics that describe the underlying distribution between data points based on the distance metric learning (DML) methods can further improve the performance of ship classification in SAR images. Traditional supervised DML methods usually learn distance metrics based on pairwise constraints, but ignore the importance of inter-class distribution discrepancy. In this study, we propose a novel DML method named distribution discrepancy maximization metric learning (DDMML) algorithm, which maximizes the maximum mean discrepancy (MMD) between different categories in the process of learning distance metrics. We adopt a high -resolution SAR ship database for experimental evaluation. The experimental results show that the proposed method outperforms the state-of-the-art DML methods.
引用
收藏
页码:1208 / 1211
页数:4
相关论文
共 50 条
  • [31] Complex Permittivity Extraction From Synthetic Aperture Radar Images
    Gao, Yuan
    Al Qaseer, Mohammad Tayeb
    Zoughi, Reza
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (07) : 4919 - 4929
  • [32] Spatially variant apodization for squinted synthetic aperture radar images
    Castillo-Rubio, Carlos F.
    Llorente-Romano, Sergio
    Burgos-Garcia, Mateo
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) : 2023 - 2027
  • [33] Filtering of Azimuth Ambiguity in Stripmap Synthetic Aperture Radar Images
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (09) : 3967 - 3978
  • [34] Oil Spill Segmentation in Fused Synthetic Aperture Radar Images
    Longman, Fodio S.
    Mihaylova, Lyudmila
    Coca, Daniel
    [J]. 2016 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2016,
  • [35] Deep Learning for Mineral and Biogenic Oil Slick Classification With Airborne Synthetic Aperture Radar Data
    De Laurentiis, Leonardo
    Jones, Cathleen E.
    Holt, Benjamin
    Schiavon, Giovanni
    Del Frate, Fabio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (10): : 8455 - 8469
  • [36] Curvelet-Based Synthetic Aperture Radar Image Classification
    Uslu, Erkan
    Albayrak, Songul
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (06) : 1071 - 1075
  • [37] Rapid detection to long ship wake in synthetic aperture radar satellite imagery
    CHEN Peng
    LI Xiunan
    ZHENG Gang
    [J]. Journal of Oceanology and Limnology, 2019, 37 (05) : 1523 - 1532
  • [38] Object-Enhanced YOLO Networks for Synthetic Aperture Radar Ship Detection
    Wu, Kun
    Zhang, Zhijian
    Chen, Zeyu
    Liu, Guohua
    [J]. REMOTE SENSING, 2024, 16 (06)
  • [39] Rapid detection to long ship wake in synthetic aperture radar satellite imagery
    Peng Chen
    Xiunan Li
    Gang Zheng
    [J]. Journal of Oceanology and Limnology, 2019, 37 : 1523 - 1532
  • [40] Synthetic Aperture Radar Ship Detection Using Haar-Like Features
    Schwegmann, C. P.
    Kleynhans, W.
    Salmon, B. P.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (02) : 154 - 158