On the stochastic transport equation of convolution type

被引:1
作者
Ouerdiane, H [1 ]
Silva, JL [1 ]
机构
[1] Univ Tunis el Manar, Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
来源
RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS | 2004年
关键词
generalized functions; convolution calculus; stochastic transport equation; generalized stochastic process;
D O I
10.1142/9789812702241_0024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the stochastic transport equation of convolution type. For general initial condition and its coefficients we give an explicit solution which is a well defined generalized stochastic process in a suitable distribution space. Under certain assumptions on the coefficients we also write the obtained solution as a convergent series of integrals.
引用
收藏
页码:384 / 398
页数:15
相关论文
共 14 条
  • [1] Albeverio S., 1976, Lecture notes in mathematics, V523
  • [2] [Anonymous], 1995, SPECTRAL METHODS INF
  • [3] Asai N, 2001, TRENDS MATH, P29
  • [4] BENCHROUDA M, 2000, 000720 BIBIOS U BIEL
  • [5] Duality theorem between spaces of holomorphic functions with exponential growth
    Gannoun, R
    Hachaichi, R
    Ouerdiane, H
    Rezgui, A
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (01) : 1 - 14
  • [6] Hida T., 1993, WHITE NOISE INFINITE
  • [7] Holden H., 1996, Stochastic Partial Differential Equations
  • [8] Krasnosel'ski M.A, 1961, CONVEX FUNCTIONS ORL
  • [9] A Bochner-Minlos theorem with an integrability condition
    Ouerdiane, H
    Rezgui, A
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2000, 3 (02) : 297 - 302
  • [10] OUERDIANE H, 1999, PHYS GEOMETRY NEW IN