A NOVEL TENSOR-BASED FEATURE EXTRACTION METHOD FOR POLSAR IMAGE CLASSIFICATION

被引:0
作者
Huang, Xiayuan [1 ]
Nie, Xiangli [1 ]
Qiao, Hong [1 ]
Zhang, Bo [2 ,3 ]
机构
[1] Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, AMSS, State Key Lab Sci & Engn Comp, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
spatial heterogeneity; tensor-based dimensionality reduction; PolSAR image classification; feature extraction;
D O I
10.1109/igarss.2019.8898594
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spatial information helps improve the performance of polarimetric synthetic aperture radar (PoISAR) image classification. Some existing methods have combined the spatial information and polarimetric features by the third-order tensor representation for feature extraction. They describe a pixel with the patch centered on this pixel. But they neglect the spatial heterogeneity, which may influence the classification performance. Therefore, we firstly seek k nearest samples based on the polarimetric feature similarity for each pixel to construct the second-order tensor, whose first order denotes the nearest samples and the second order denotes the polarimetric features. Moreover, k nearest samples are searched in a spatial local region rather than the full image, which can exploit the spatial information and reduce the computational burden. Then we employ tensor principal component analysis (TPCA) to extract low-dimensional features. Experimental results demonstrate that the proposed method can improve the classification performance compared with other methods.
引用
收藏
页码:1152 / 1155
页数:4
相关论文
共 9 条
[1]   Texture Classification of PolSAR Data Based on Sparse Coding of Wavelet Polarization Textons [J].
He, Chu ;
Li, Shuang ;
Liao, Zixian ;
Liao, Mingsheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (08) :4576-4590
[2]   A NOVEL OVER-SEGMENTATION METHOD FOR POLARIMETRIC SAR IMAGES CLASSIFICATION [J].
He, Chu ;
Deng, Jingbo ;
Xu, Lianyu ;
Li, Shuang ;
Duan, Mengmeng ;
Liao, Mingsheng .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :4299-4302
[3]   Supervised Polarimetric SAR Image Classification Using Tensor Local Discriminant Embedding [J].
Huang, Xiayuan ;
Qiao, Hong ;
Zhang, Bo ;
Nie, Xiangli .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) :2966-2979
[4]  
Liu H., 2018, IEEE J-STSP, P1
[5]   Supervised Graph Embedding for Polarimetric SAR Image Classification [J].
Shi, Lei ;
Zhang, Lefei ;
Yang, Jie ;
Zhang, Liangpei ;
Li, Pingxiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) :216-220
[6]  
Tao ML, 2017, INT GEOSCI REMOTE SE, P1796, DOI 10.1109/IGARSS.2017.8127324
[7]   Laplacian Eigenmaps-Based Polarimetric Dimensionality Reduction for SAR Image Classification [J].
Tu, Shang Tan ;
Chen, Jia Yu ;
Yang, Wen ;
Sun, Hong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (01) :170-179
[8]   Integrating Color Features in Polarimetric SAR Image Classification [J].
Uhlmann, Stefan ;
Kiranyaz, Serkan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (04) :2197-2216
[9]  
Zhang LM, 2017, INT GEOSCI REMOTE SE, P4578, DOI 10.1109/IGARSS.2017.8128020