Investigating Deep Learning Based Breast Cancer Subtyping Using Pan-Cancer and Multi-Omic Data

被引:17
作者
Cristovao, Francisco [1 ]
Cascianelli, Silvia [1 ]
Canakoglu, Arif [1 ]
Carman, Mark [1 ]
Nanni, Luca [1 ]
Pinoli, Pietro [1 ]
Masseroli, Marco [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
关键词
Deep learning; genomics; multi-omics; semi supervised learning; variational autoencoder; COMPREHENSIVE MOLECULAR PORTRAITS; CLASSIFICATION; PATTERNS;
D O I
10.1109/TCBB.2020.3042309
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Breast Cancer comprises multiple subtypes implicated in prognosis. Existing stratification methods rely on the expression quantification of small gene sets. Next Generation Sequencing promises large amounts of omic data in the next years. In this scenario, we explore the potential of machine learning and, particularly, deep learning for breast cancer subtyping. Due to the paucity of publicly available data, we leverage on pan-cancer and non-cancer data to design semi-supervised settings. We make use of multi-omic data, including microRNA expressions and copy number alterations, and we provide an in-depth investigation of several supervised and semi-supervised architectures. Obtained accuracy results show simpler models to perform at least as well as the deep semi-supervised approaches on our task over gene expression data. When multi-omic data types are combined together, performance of deep models shows little (if any) improvement in accuracy, indicating the need for further analysis on larger datasets of multi-omic data as and when they become available. From a biological perspective, our linear model mostly confirms known gene-subtype annotations. Conversely, deep approaches model non-linear relationships, which is reflected in a more varied and still unexplored set of representative omic features that may prove useful for breast cancer subtyping.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 34 条
[1]   Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening [J].
Aboutalib, Sarah S. ;
Mohamed, Aly A. ;
Berg, Wendie A. ;
Zuley, Margarita L. ;
Sumkin, Jules H. ;
Wu, Shandong .
CLINICAL CANCER RESEARCH, 2018, 24 (23) :5902-5909
[2]  
[Anonymous], 2018, bioRxiv
[3]  
Bhat S.A., 2019, Advances in Biomarker Sciences and Technology, V1, P1, DOI DOI 10.1016/J.ABST.2019.05.001
[4]  
Cascianelli S., 2020, Sci. Rep., V10, P1
[5]  
Chen R., 2019, BIOINFORMATICS
[6]   miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions [J].
Chou, Chih-Hung ;
Shrestha, Sirjana ;
Yang, Chi-Dung ;
Chang, Nai-Wen ;
Lin, Yu-Ling ;
Liao, Kuang-Wen ;
Huang, Wei-Chi ;
Sun, Ting-Hsuan ;
Tu, Siang-Jyun ;
Lee, Wei-Hsiang ;
Chiew, Men-Yee ;
Tai, Chun-San ;
Wei, Ting-Yen ;
Tsai, Tzi-Ren ;
Huang, Hsin-Tzu ;
Wang, Chung-Yu ;
Wu, Hsin-Yi ;
Ho, Shu-Yi ;
Chen, Pin-Rong ;
Chuang, Cheng-Hsun ;
Hsieh, Pei-Jung ;
Wu, Yi-Shin ;
Chen, Wen-Liang ;
Li, Meng-Ju ;
Wu, Yu-Chun ;
Huang, Xin-Yi ;
Ng, Fung Ling ;
Buddhakosai, Waradee ;
Huang, Pei-Chun ;
Lan, Kuan-Chun ;
Huang, Chia-Yen ;
Weng, Shun-Long ;
Cheng, Yeong-Nan ;
Liang, Chao ;
Hsu, Wen-Lian ;
Huang, Hsien-Da .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D296-D302
[7]   Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer [J].
Ciriello, Giovanni ;
Gatza, Michael L. ;
Beck, Andrew H. ;
Wilkerson, Matthew D. ;
Rhie, Suhn K. ;
Pastore, Alessandro ;
Zhang, Hailei ;
McLellan, Michael ;
Yau, Christina ;
Kandoth, Cyriac ;
Bowlby, Reanne ;
Shen, Hui ;
Hayat, Sikander ;
Fieldhouse, Robert ;
Lester, Susan C. ;
Tse, Gary M. K. ;
Factor, Rachel E. ;
Collins, Laura C. ;
Allison, Kimberly H. ;
Chen, Yunn-Yi ;
Jensen, Kristin ;
Johnson, Nicole B. ;
Oesterreich, Steffi ;
Mills, Gordon B. ;
Cherniack, Andrew D. ;
Robertson, Gordon ;
Benz, Christopher ;
Sander, Chris ;
Laird, Peter W. ;
Hoadley, Katherine A. ;
King, Tari A. ;
Perou, Charles M. .
CELL, 2015, 163 (02) :506-519
[8]   Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent [J].
Cruz-Roa, Angel ;
Gilmore, Hannah ;
Basavanhally, Ajay ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie N. C. ;
Tomaszewski, John ;
Gonzalez, Fabio A. ;
Madabhushi, Anant .
SCIENTIFIC REPORTS, 2017, 7
[9]  
Dai XF, 2015, AM J CANCER RES, V5, P2929
[10]  
Doersch C., 2016, arXiv