FPGA-based Deep-Learning Accelerators for Energy Efficient Motor Imagery EEG classification

被引:1
|
作者
Flood, Daniel [1 ]
Robinson, Neethu [2 ]
Shreejith, Shanker [1 ]
机构
[1] Trinity Coll Dublin, Dept Elect & Elect Engn, Dublin, Ireland
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
关键词
Brain-Computer Interfaces; Deep Learning; Field Programmable Gate Arrays; AI Accelerators; BRAIN-COMPUTER INTERFACES; COMMUNICATION;
D O I
10.1109/COINS54846.2022.9854985
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Deep Learning has emerged as a powerful framework for analysing and decoding bio-signals like Electroencephalography (EEG) with applications in brain computer interfaces (BCI) and motor control. Deep convolutional neural networks have shown to be highly effective in decoding BCI signals for applications like two-class motor imagery decoding. Their deployment in real-time applications, however, requires highly parallel and capable computing platforms like GPUs to achieve high-speed inference, consuming a large amount of energy. In this paper, we explore a custom deep learning accelerator on an off-the-shelf hybrid FPGA device to achieve similar inference performance at a fraction of the energy consumption. We evaluate different optimisations at bit-level, data-path and training using a state-of-the-art deep convolutional neural network as our baseline model to arrive at our custom precision quantised deep learning model, which is implemented using the FINN compiler from Xilinx. The accelerator, deployed on a Xilinx Zynq Ultrascale+ FPGA, achieves a significant reduction in power consumption (approximate to 17x), sub 2 ms decoding latency and a near-identical decoding accuracy (statistically insignificant reduction of 2.5% average) as the reported baseline subject-specific classification accuracy on an N (= 54) subject motor imagery EEG (MI-EEG) dataset compared to the Deep CNN model on GPU, making our approach more appealing for low-power real-time BCI applications. Furthermore, this design approach is transferable to other deep learning models reported in BCI research, paving the way for novel applications of real-time portable BCI systems.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [41] Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off
    Leon, Javier
    Jose Escobar, Juan
    Ortiz, Andres
    Ortega, Julio
    Gonzalez, Jesus
    Martin-Smith, Pedro
    Gan, John Q.
    Damas, Miguel
    PLOS ONE, 2020, 15 (06):
  • [42] Incorporating hand-crafted features into deep learning models for motor imagery EEG-based classification
    Bustios, Paul
    Rosa, Joao Luis Garcia
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30133 - 30147
  • [43] A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
    Echtioui, Amira
    Mlaouah, Ayoub
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [44] Incorporating hand-crafted features into deep learning models for motor imagery EEG-based classification
    Paul Bustios
    João Luís Garcia Rosa
    Applied Intelligence, 2023, 53 : 30133 - 30147
  • [45] Motor Imagery EEG Classification Based on Kernel Hierarchical Extreme Learning Machine
    Duan, Lijuan
    Bao, Menghu
    Cui, Song
    Qiao, Yuanhua
    Miao, Jun
    COGNITIVE COMPUTATION, 2017, 9 (06) : 758 - 765
  • [46] Motor Imagery EEG Classification Based on Kernel Hierarchical Extreme Learning Machine
    Lijuan Duan
    Menghu Bao
    Song Cui
    Yuanhua Qiao
    Jun Miao
    Cognitive Computation, 2017, 9 : 758 - 765
  • [47] Deep Learning Classification of two-class Motor Imagery EEG signals using Transfer Learning
    Shajil, Nijisha
    Sasikala, M.
    Arunnagiri, A. M.
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [48] Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
    Tibrewal, Navneet
    Leeuwis, Nikki
    Alimardani, Maryam
    PLOS ONE, 2022, 17 (07):
  • [49] Multi-class Classification of Motor Imagery EEG Signals Using Deep Learning Models
    Khemakhem R.
    Belgacem S.
    Echtioui A.
    Ghorbel M.
    Ben Hamida A.
    Kammoun I.
    SN Computer Science, 5 (5)
  • [50] Subject-Independent Deep Architecture for EEG-Based Motor Imagery Classification
    Sartipi, Shadi
    Cetin, Mujdat
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 718 - 727